Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊)1,2,†, Jia-Hao Liu(刘嘉豪)1,†, Ya-Bo Chen(陈亚博)1, Yun-Ping Zhao(赵云平)1, Bo Wei(危波)1, and Liang Fang(方粮)1,‡
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 2 Hunan University of Humanities Science and Technology, Loudi 417000, China
Abstract The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation. Through combining the skyrmion with multiferroic heterojunction, a voltage-induced uniaxial strain gradient is adjusted to move skyrmions. In the system, a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain. Due to the symmetry of strain, the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation. We calculate the strain distribution generated by the trapezoidal top electrodes pair, and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity. Our findings provide a stable and low-energy regulation method for skyrmion transport.
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 61832007), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2021JM-221 and 2018JM6075), and the Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2020JQ-470).
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮) Skyrmion transport driven by pure voltage generated strain gradient 2022 Chin. Phys. B 31 117701
[1] Skyrme T H R 1962 Nucl. Phys.31 556 [2] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science323 915 [3] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature465 901 [4] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science336 198 [5] Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N and Zhang Y G 2018 Acta Phys. Sin.67 131205 (in Chinese) [6] Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Fang L and Jiang W J 2022 Chin. Phys. Lett.39 017501 [7] Jonitz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science330 1648 [8] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H and Woo S 2020 Nat. Electron.3 148 [9] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl.9 044007 [10] Wang C, Xiao D, Chen X, Zhou Y and Liu Y 2017 New J. Phys.19 083008 [11] Mochizuki and Masahito 2017 Appl. Phys. Lett.111 092403 [12] Gong C F, Zhou Y and Zhao G P 2022 Appl. Phys. Lett.120 052402 [13] Wang Z D, Guo M, Zhou H A, et al. 2020 Nat. Electron.3 1 [14] Wang W, Beg M, Zhang B, Wolfgang K and Hans F 2015 Phys. Rev. B92 020403 [15] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology26 225701 [16] Li S, Xia J, Zhang X C, Ezawa M, Kang W, Liu X, Zhou Y and Zhao W S 2018 Appl. Phys. Lett.112 142404 [17] Liu Y, Yin G, Zang J, Shi J and Lake R K 2015 Appl. Phys. Lett.107 152411 [18] Zang J, Mostovoy M, Han J and Nagaosa N 2011 Phys. Rev. Lett.107 136804 [19] Lin S Z, Reichha rdt C, Batista C D and Saxena A 2013 Phys. Rev. Lett.110 207202 [20] Yu G, Upadhyaya P, Fan Y, Alzate J, Jiang W J, Wong K, Takei S, Bender S, Lang M, Tang J, Tserkovnyak Y, Amiri P, Khalili and Wang K L 2013 Nat. Nanotechnol.9 548 [21] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis Suzanne G E and Hoffmann A 2015 Science349 283 [22] Liu G B, Li D, Chatel P F, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B25 067203 [23] Upadhyaya P, Yu G, Amiri P K and Wang K L 2015 Phys. Rev. B92 134411 [24] Xia H Y, Song C K, Jin C D, Wang J S, Wang J B and Liu Q F 2018 J. Magn. Magn. Mater.458 57 [25] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E 2017 Nat. Phys.13 162 [26] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys.13 170 [27] Ritz R 2015 Nat. Nanotechnol.10 573 [28] Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y and Iwasa Y 2015 Nat. Commun.6 8539 [29] Hu J M, Yang T and Chen L Q 2018 npj Comput. Mater.4 62 [30] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater.16 712 [31] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun.4 1378 [32] Liu M, Zhou Z, Nan T, Howe B, Brown G and Sun N 2013 Adv. Mater.25 1435 [33] Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C and Dong D N 2019 J. Magn. Magn. Mater.491 165607 [34] Liu J H, Huang L, Yang X K, Li C, Xu N, Yang B B, Duan Z K, Zhu L Y and Fang L 2020 J. Magn. Magn. Mater.513 167105 [35] Liu J H, Yang X K, Hong D H, Li C, Xu N, Yang B B and Fang L 2021 Scripta Mater.193 132 [36] Ba Y, Zhuang S H, Zhang Y K, Wang Y T, Gao Y, Zhou H A, Chen M F, Sun W D, Liu Q, Chai G Z, Ma J, Zhang Y, Tian H F, Du H F, Jiang W J, Nan C W, Hu J M and Zhao Y G 2021 Nat. Commun.12 322 [37] Wang Y D, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X and Liu J 2020 Nat. Commun.11 3577 [38] Feng C, Meng F, Wang Y D, Jiang J W, Mehmood N, Cao Y, Lv X W, Yang F, Wang L, Zhao Y K, Xie S, Hou Z P, Mi W B, Peng Y, Wang K Y, Gao X S, Yu G H and Liu J M 2021 Adv. Funct. Mater.31 2008715 [39] Liu Y, Huo X H, Xuan S J and Yan H 2019 J. Magn. Magn. Mater.492 165659 [40] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L 2019 Appl. Phys. Lett.115 132401 [41] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Akamura M 2004 Nature432 84 [42] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve Rm, Weigand M, Agrawal P, Lemesh I, Mawass Ma, Fischer P, Klaui M and Beach GRSD 2016 Nat. Mater.15 501 [43] Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y and Han X F 2014 Adv. Mater.26 4320 [44] Li Y C, Edmonds K W, Liu X H, Zheng H Z and Wang K Y 2019 Adv. Quantum Technol.2 1800052 [45] Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C and Dong D N 2019 J. Magn. Magn. Mater.474 161 [46] Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N and Li C 2019 IEEE Electron Dev. Lett.40 220 [47] Cui J Z, Hockel J L, Nordeen P K, Pisan D M, Liang C Y, Carman G P and Lynch C S 2013 Appl. Phys. Lett.103 232905 [48] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V and Loidl A 2015 Nat. Mater.14 1116 [49] Gilbert T L 2004 IEEE T. Magn.40 3443 [50] Li S, Du A, Wang Y D, Wang X R, Zhang X Y, Cheng H Y, Cai W L, Lu S Y, Cao K H, Pan B, Lei N, Kang W, Liu J M, Fert A, Hou Z P and Zhao W S 2022 Sci. Bull.67 691 [51] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B24 077501
[1]
Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
Non-volatile multi-state magnetic domain transformation in a Hall balance Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[9]
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.