CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Skyrmion transport driven by pure voltage generated strain gradient |
Shan Qiu(邱珊)1,2,†, Jia-Hao Liu(刘嘉豪)1,†, Ya-Bo Chen(陈亚博)1, Yun-Ping Zhao(赵云平)1, Bo Wei(危波)1, and Liang Fang(方粮)1,‡ |
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 2 Hunan University of Humanities Science and Technology, Loudi 417000, China |
|
|
Abstract The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation. Through combining the skyrmion with multiferroic heterojunction, a voltage-induced uniaxial strain gradient is adjusted to move skyrmions. In the system, a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain. Due to the symmetry of strain, the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation. We calculate the strain distribution generated by the trapezoidal top electrodes pair, and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity. Our findings provide a stable and low-energy regulation method for skyrmion transport.
|
Received: 21 April 2022
Revised: 23 July 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
77.65.Ly
|
(Strain-induced piezoelectric fields)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 61832007), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2021JM-221 and 2018JM6075), and the Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2020JQ-470). |
Corresponding Authors:
Liang Fang
E-mail: lfang@nudt.edu.cn
|
Cite this article:
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮) Skyrmion transport driven by pure voltage generated strain gradient 2022 Chin. Phys. B 31 117701
|
[1] Skyrme T H R 1962 Nucl. Phys. 31 556 [2] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915 [3] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [4] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198 [5] Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N and Zhang Y G 2018 Acta Phys. Sin. 67 131205 (in Chinese) [6] Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Fang L and Jiang W J 2022 Chin. Phys. Lett. 39 017501 [7] Jonitz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648 [8] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H and Woo S 2020 Nat. Electron. 3 148 [9] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl. 9 044007 [10] Wang C, Xiao D, Chen X, Zhou Y and Liu Y 2017 New J. Phys. 19 083008 [11] Mochizuki and Masahito 2017 Appl. Phys. Lett. 111 092403 [12] Gong C F, Zhou Y and Zhao G P 2022 Appl. Phys. Lett. 120 052402 [13] Wang Z D, Guo M, Zhou H A, et al. 2020 Nat. Electron. 3 1 [14] Wang W, Beg M, Zhang B, Wolfgang K and Hans F 2015 Phys. Rev. B 92 020403 [15] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology 26 225701 [16] Li S, Xia J, Zhang X C, Ezawa M, Kang W, Liu X, Zhou Y and Zhao W S 2018 Appl. Phys. Lett. 112 142404 [17] Liu Y, Yin G, Zang J, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411 [18] Zang J, Mostovoy M, Han J and Nagaosa N 2011 Phys. Rev. Lett. 107 136804 [19] Lin S Z, Reichha rdt C, Batista C D and Saxena A 2013 Phys. Rev. Lett. 110 207202 [20] Yu G, Upadhyaya P, Fan Y, Alzate J, Jiang W J, Wong K, Takei S, Bender S, Lang M, Tang J, Tserkovnyak Y, Amiri P, Khalili and Wang K L 2013 Nat. Nanotechnol. 9 548 [21] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis Suzanne G E and Hoffmann A 2015 Science 349 283 [22] Liu G B, Li D, Chatel P F, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203 [23] Upadhyaya P, Yu G, Amiri P K and Wang K L 2015 Phys. Rev. B 92 134411 [24] Xia H Y, Song C K, Jin C D, Wang J S, Wang J B and Liu Q F 2018 J. Magn. Magn. Mater. 458 57 [25] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E 2017 Nat. Phys. 13 162 [26] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys. 13 170 [27] Ritz R 2015 Nat. Nanotechnol. 10 573 [28] Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y and Iwasa Y 2015 Nat. Commun. 6 8539 [29] Hu J M, Yang T and Chen L Q 2018 npj Comput. Mater. 4 62 [30] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712 [31] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun. 4 1378 [32] Liu M, Zhou Z, Nan T, Howe B, Brown G and Sun N 2013 Adv. Mater. 25 1435 [33] Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C and Dong D N 2019 J. Magn. Magn. Mater. 491 165607 [34] Liu J H, Huang L, Yang X K, Li C, Xu N, Yang B B, Duan Z K, Zhu L Y and Fang L 2020 J. Magn. Magn. Mater. 513 167105 [35] Liu J H, Yang X K, Hong D H, Li C, Xu N, Yang B B and Fang L 2021 Scripta Mater. 193 132 [36] Ba Y, Zhuang S H, Zhang Y K, Wang Y T, Gao Y, Zhou H A, Chen M F, Sun W D, Liu Q, Chai G Z, Ma J, Zhang Y, Tian H F, Du H F, Jiang W J, Nan C W, Hu J M and Zhao Y G 2021 Nat. Commun. 12 322 [37] Wang Y D, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X and Liu J 2020 Nat. Commun. 11 3577 [38] Feng C, Meng F, Wang Y D, Jiang J W, Mehmood N, Cao Y, Lv X W, Yang F, Wang L, Zhao Y K, Xie S, Hou Z P, Mi W B, Peng Y, Wang K Y, Gao X S, Yu G H and Liu J M 2021 Adv. Funct. Mater. 31 2008715 [39] Liu Y, Huo X H, Xuan S J and Yan H 2019 J. Magn. Magn. Mater. 492 165659 [40] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L 2019 Appl. Phys. Lett. 115 132401 [41] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Akamura M 2004 Nature 432 84 [42] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve Rm, Weigand M, Agrawal P, Lemesh I, Mawass Ma, Fischer P, Klaui M and Beach GRSD 2016 Nat. Mater. 15 501 [43] Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y and Han X F 2014 Adv. Mater. 26 4320 [44] Li Y C, Edmonds K W, Liu X H, Zheng H Z and Wang K Y 2019 Adv. Quantum Technol. 2 1800052 [45] Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C and Dong D N 2019 J. Magn. Magn. Mater. 474 161 [46] Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N and Li C 2019 IEEE Electron Dev. Lett. 40 220 [47] Cui J Z, Hockel J L, Nordeen P K, Pisan D M, Liang C Y, Carman G P and Lynch C S 2013 Appl. Phys. Lett. 103 232905 [48] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V and Loidl A 2015 Nat. Mater. 14 1116 [49] Gilbert T L 2004 IEEE T. Magn. 40 3443 [50] Li S, Du A, Wang Y D, Wang X R, Zhang X Y, Cheng H Y, Cai W L, Lu S Y, Cao K H, Pan B, Lei N, Kang W, Liu J M, Fert A, Hou Z P and Zhao W S 2022 Sci. Bull. 67 691 [51] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|