Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117701    DOI: 10.1088/1674-1056/ac8927

Skyrmion transport driven by pure voltage generated strain gradient

Shan Qiu(邱珊)1,2,†, Jia-Hao Liu(刘嘉豪)1,†, Ya-Bo Chen(陈亚博)1, Yun-Ping Zhao(赵云平)1, Bo Wei(危波)1, and Liang Fang(方粮)1,‡
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
2 Hunan University of Humanities Science and Technology, Loudi 417000, China
Abstract  The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation. Through combining the skyrmion with multiferroic heterojunction, a voltage-induced uniaxial strain gradient is adjusted to move skyrmions. In the system, a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain. Due to the symmetry of strain, the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation. We calculate the strain distribution generated by the trapezoidal top electrodes pair, and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity. Our findings provide a stable and low-energy regulation method for skyrmion transport.
Keywords:  skyrmion      strain gradient      multiferroic heterojunction      spintronics  
Received:  21 April 2022      Revised:  23 July 2022      Accepted manuscript online:  12 August 2022
PACS:  77.65.Ly (Strain-induced piezoelectric fields)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  12.39.Dc (Skyrmions)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 61832007), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2021JM-221 and 2018JM6075), and the Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2020JQ-470).
Corresponding Authors:  Liang Fang     E-mail:

Cite this article: 

Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮) Skyrmion transport driven by pure voltage generated strain gradient 2022 Chin. Phys. B 31 117701

[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[2] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[3] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[4] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[5] Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N and Zhang Y G 2018 Acta Phys. Sin. 67 131205 (in Chinese)
[6] Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Fang L and Jiang W J 2022 Chin. Phys. Lett. 39 017501
[7] Jonitz F, Muhlbauer S, Pfleiderer C, Neubauer A, Munzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[8] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H and Woo S 2020 Nat. Electron. 3 148
[9] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl. 9 044007
[10] Wang C, Xiao D, Chen X, Zhou Y and Liu Y 2017 New J. Phys. 19 083008
[11] Mochizuki and Masahito 2017 Appl. Phys. Lett. 111 092403
[12] Gong C F, Zhou Y and Zhao G P 2022 Appl. Phys. Lett. 120 052402
[13] Wang Z D, Guo M, Zhou H A, et al. 2020 Nat. Electron. 3 1
[14] Wang W, Beg M, Zhang B, Wolfgang K and Hans F 2015 Phys. Rev. B 92 020403
[15] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology 26 225701
[16] Li S, Xia J, Zhang X C, Ezawa M, Kang W, Liu X, Zhou Y and Zhao W S 2018 Appl. Phys. Lett. 112 142404
[17] Liu Y, Yin G, Zang J, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411
[18] Zang J, Mostovoy M, Han J and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
[19] Lin S Z, Reichha rdt C, Batista C D and Saxena A 2013 Phys. Rev. Lett. 110 207202
[20] Yu G, Upadhyaya P, Fan Y, Alzate J, Jiang W J, Wong K, Takei S, Bender S, Lang M, Tang J, Tserkovnyak Y, Amiri P, Khalili and Wang K L 2013 Nat. Nanotechnol. 9 548
[21] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis Suzanne G E and Hoffmann A 2015 Science 349 283
[22] Liu G B, Li D, Chatel P F, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203
[23] Upadhyaya P, Yu G, Amiri P K and Wang K L 2015 Phys. Rev. B 92 134411
[24] Xia H Y, Song C K, Jin C D, Wang J S, Wang J B and Liu Q F 2018 J. Magn. Magn. Mater. 458 57
[25] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E 2017 Nat. Phys. 13 162
[26] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys. 13 170
[27] Ritz R 2015 Nat. Nanotechnol. 10 573
[28] Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y and Iwasa Y 2015 Nat. Commun. 6 8539
[29] Hu J M, Yang T and Chen L Q 2018 npj Comput. Mater. 4 62
[30] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712
[31] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun. 4 1378
[32] Liu M, Zhou Z, Nan T, Howe B, Brown G and Sun N 2013 Adv. Mater. 25 1435
[33] Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C and Dong D N 2019 J. Magn. Magn. Mater. 491 165607
[34] Liu J H, Huang L, Yang X K, Li C, Xu N, Yang B B, Duan Z K, Zhu L Y and Fang L 2020 J. Magn. Magn. Mater. 513 167105
[35] Liu J H, Yang X K, Hong D H, Li C, Xu N, Yang B B and Fang L 2021 Scripta Mater. 193 132
[36] Ba Y, Zhuang S H, Zhang Y K, Wang Y T, Gao Y, Zhou H A, Chen M F, Sun W D, Liu Q, Chai G Z, Ma J, Zhang Y, Tian H F, Du H F, Jiang W J, Nan C W, Hu J M and Zhao Y G 2021 Nat. Commun. 12 322
[37] Wang Y D, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X and Liu J 2020 Nat. Commun. 11 3577
[38] Feng C, Meng F, Wang Y D, Jiang J W, Mehmood N, Cao Y, Lv X W, Yang F, Wang L, Zhao Y K, Xie S, Hou Z P, Mi W B, Peng Y, Wang K Y, Gao X S, Yu G H and Liu J M 2021 Adv. Funct. Mater. 31 2008715
[39] Liu Y, Huo X H, Xuan S J and Yan H 2019 J. Magn. Magn. Mater. 492 165659
[40] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L 2019 Appl. Phys. Lett. 115 132401
[41] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Akamura M 2004 Nature 432 84
[42] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve Rm, Weigand M, Agrawal P, Lemesh I, Mawass Ma, Fischer P, Klaui M and Beach GRSD 2016 Nat. Mater. 15 501
[43] Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y and Han X F 2014 Adv. Mater. 26 4320
[44] Li Y C, Edmonds K W, Liu X H, Zheng H Z and Wang K Y 2019 Adv. Quantum Technol. 2 1800052
[45] Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C and Dong D N 2019 J. Magn. Magn. Mater. 474 161
[46] Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N and Li C 2019 IEEE Electron Dev. Lett. 40 220
[47] Cui J Z, Hockel J L, Nordeen P K, Pisan D M, Liang C Y, Carman G P and Lynch C S 2013 Appl. Phys. Lett. 103 232905
[48] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V and Loidl A 2015 Nat. Mater. 14 1116
[49] Gilbert T L 2004 IEEE T. Magn. 40 3443
[50] Li S, Du A, Wang Y D, Wang X R, Zhang X Y, Cheng H Y, Cai W L, Lu S Y, Cao K H, Pan B, Lei N, Kang W, Liu J M, Fert A, Hou Z P and Zhao W S 2022 Sci. Bull. 67 691
[51] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501
[1] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[6] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[7] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[8] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[9] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[10] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[11] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[12] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[13] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[14] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[15] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
No Suggested Reading articles found!