Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048102    DOI: 10.1088/1674-1056/ac2b20
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse

Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林)
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Bi$_{2}$O$_{2}$Se has been proved to be a promising candidate for electronic and optoelectronic devices due to their unique physical properties. However, it is still a great challenge to construct the heterostructures with direct epitaxy of hetero semiconductor materials on Bi$_{2}$O$_{2}$Se nanosheets. Here, a two-step chemical vapor deposition (CVD) route was used to directly grow the CsPbBr$_{3}$ nanoplate-Bi$_{2}$O$_{2}$Se nanosheet heterostructures. The CsPbBr$_{3}$ nanoplates were selectively grown on the Bi$_{2}$O$_{2}$Se nanosheet along the edges, where the dangling bonds provide the nucleation sites. The epitaxial relationships between CsPbBr$_{3}$ and Bi$_{2}$O$_{2}$Se were determined as ${[200]}_{\rm Bi_{2}O_{2}Se}||{[110]}_{\rm CsPbBr_{3}}$ and ${[110]}_{\rm Bi_{2}O_{2}Se}||{[200]}_{\rm CsPbBr_{3}}$ by transmission electron microscopy characterization. The photoluminescence (PL) results reveal that the formation of heterostructures results in the remarkable PL quenching due to the type-I band arrangement at CsPbBr$_{3}$/Bi$_{2}$O$_{2}$Se interface, which was confirmed by ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe measurements, and makes the photogenerated carriers transfer from CsPbBr$_{3}$ to Bi$_{2}$O$_{2}$Se. Importantly, the photodetectors based on the heterostructures exhibit a 4-time increase in the responsivity compared to those based on the pristine Bi$_{2}$O$_{2}$Se sheets, and the fast rise and decay time in microsecond. These results indicate that the direct epitaxy of the CsPbBr$_{3}$ plates on the Bi$_{2}$O$_{2}$Se sheet may improve the optoelectronic performance of Bi$_{2}$O$_{2}$Se based devices.
Keywords:  Bi2O2Se      heterostructures      photogenerated carriers      photoresponse  
Received:  15 May 2021      Revised:  23 September 2021      Accepted manuscript online:  29 September 2021
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: The authors are grateful to the National Natural Science Foundation of China (Grant No. 51772088) and Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX20200422), and thank Prof. Huigao Duan for the help of the PL measurements.
Corresponding Authors:  Qinglin Zhang     E-mail:  qinglin.zhang@hnu.edu.cn

Cite this article: 

Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林) Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse 2022 Chin. Phys. B 31 048102

[1] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
[2] Yao J D and Yang G W 2021 Nano Today 36 101026
[3] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[4] Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Nat. Nanotechnol. 15 545
[5] Wang Y, Gao M, Wu J and Zhang X 2019 Chin. Phys. B 28 018502
[6] Yue H, Hu A, Liu Q, Tian H, Hu C, Ren X, Chen N, Ge C, Jin K and Guo X 2021 Chin. Phys. B 30 038502
[7] Zhou M, Zhao Y, Bian L, Zhang J, Yang W, Wu Y, Xing Z, Jiang M and Lu S 2021 Chin. Phys. B 30 078506
[8] Wen H, Xiong L, Tan C, Zhu K, Tang Y, Wang J and Zhong X 2021 Chin. Phys. B 30 057803
[9] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M and Peng H 2017 Nano Lett. 17 3021
[10] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F and Koppens F H 2012 Nat. Nanotechnol. 7 363
[11] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F, Tay B K, Zhang H, Pennycook S J and Liu Z 2019 Adv. Mater. 31 1804945
[12] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K and Peng H 2018 Nat. Commun. 9 3311
[13] Zhu C, Tong T, Liu Y, Meng Y, Nie Z, Wang X, Xu Y, Shi Y, Zhang R and Wang F 2018 Appl. Phys. Lett. 113 061104
[14] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G and Biswas K 2019 Nano Lett. 19 5703
[15] Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B and Cheng H M 2019 Adv. Funct. Mater. 29 1807979
[16] Wu Z, Liu G, Wang Y, Yang X, Wei T, Wang Q, Liang J, Xu N, Li Z, Zhu B, Qi H, Deng Y and Zhu J 2019 Adv. Funct. Mater. 29 1906639
[17] Hong C, Tao Y, Nie A, Zhang M, Wang N, Li R, Huang J, Huang Y, Ren X, Cheng Y and Liu X 2020 ACS Nano 14 16803
[18] Li T, Tu T, Sun Y, Fu H, Yu J, Xing L, Wang Z, Wang H, Jia R, Wu J, Tan C, Liang Y, Zhang Y, Zhang C, Dai Y, Qiu C, Li M, Huang R, Jiao L, Lai K, Yan B, Gao P and Peng H 2020 Nat. Electron. 3 473
[19] Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J and Ni Z 2020 Adv. Mater. 33 2004786
[20] Chen Y, Ma W, Tan C, Luo M, Zhou W, Yao N, Wang H, Zhang L, Xu T, Tong T, Zhou Y, Xu Y, Yu C, Shan C, Peng H, Yue F, Wang P, Huang Z and Hu W 2021 Adv. Funct. Mater. 31 2009554
[21] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H and Di D 2018 Nat. Photonics 12 783
[22] Fan C, Xu X, Yang K, Jiang F, Wang S and Zhang Q 2018 Adv. Mater. 30 1804707
[23] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[24] Zhang Q, Liu H, Guo P, Li D, Fan P, Zheng W, Zhu X, Jiang Y, Zhou H, Hu W, Zhuang X, Liu H, Duan X and Pan A 2017 Nano Energ. 32 28
[25] Yang C M, Chen T C, Verma D, Li L J, Liu B, Chang W H and Lai C S 2020 Adv. Funct. Mater. 30 2001598
[26] Yang T, Li X, Wang L, Liu Y, Chen K, Yang X, Liao L, Dong L and Shan C X 2019 J. Mater. Sci. 54 14742
[27] Luo P, Wang F, Qu J, Liu K, Hu X, Liu K and Zhai T 2020 Adv. Funct. Mater. 31 2008351
[28] Xu Y, Zhou R, Yin Q, Li J, Si G and Zhang H 2021 Chin. Phys. B 30 077304
[29] Li Y, Huang L, Li B, Wang X, Zhou Z, Li J and Wei Z 2016 ACS Nano 10 8938
[30] Zhang Q, Zhu X, Li Y, Liang J, Chen T, Fan P, Zhou H, Hu W, Zhuang X and Pan A 2016 Laser Photon. Rev. 10 458
[31] Luo P, Zhuge F, Wang F, Lian L, Liu K, Zhang J and Zhai T 2019 ACS Nano 13 9028
[32] Li N, Wen Y, Cheng R, Yin L, Wang F, Li J, Shifa T A, Feng L, Wang Z and He J 2019 Appl. Phys. Lett. 114 103501
[33] Chen T, Fan C, Zhou W, Zou X, Xu X, Wang S, Wan Q and Zhang Q 2019 Appl. Phys. Express. 12 055005
[34] Adinolfi V and Sargent E H 2017 Nature 542 324
[35] Guo H W, Hu Z, Liu Z B and Tian J G 2020 Adv. Funct. Mater. 31 2007810
[36] Xu X, Fan C, Wang Y, Qi Z, Dai B, Jiang H, Wang S and Zhang Q 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000384
[37] Zhai X, Xu X, Peng J, Jing F, Zhang Q, Liu H and Hu Z 2020 ACS Appl. Mater. Interfaces 12 24093
[38] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, Hasan T, Tan Pand Hu P A 2016 Adv. Funct. Mater. 26 2648
[39] Wen Y, Yin L, He P, Wang Z, Zhang X, Wang Q, Shifa T A, Xu K, Wang F, Zhan X, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437
[40] Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B and Zhang Q 2019 ACS Nano 13 10085
[41] Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach and Yang X 2019 Nano Lett. 19 6315
[42] Fakharuddin A, Shabbir U, Qiu W, Iqbal T, Sultan M, Heremans P and Lukas Schmidt L 2019 Adv. Mater. 31 1807095
[43] Fang Q, Shang Q, Zhao L, Wang R, Zhang Z, Yang P, Sui X, Qiu X, Liu X, Zhang Q and Zhang Y 2018 J. Phys. Chem. Lett. 9 1655
[44] Li H, Zheng X, Liu Y, Zhang Z and Jiang T 2018 Nanoscale 10 1650
[45] Noh T, Shin H, Seo C, Kim J, Youn J, Kim J, Lee K and Joo 2019 J. Nano Res. 12 405
[46] Zhang L, Shen S, Li M, Li L, Zhang J, Fan L, Cheng F, Li C, Zhu M,Kang Z, Su J, Zhai T and Gao Y 2019 Adv. Opt. Mater. 7 1801744
[47] Fan C, Zhang Q, Zhu X, Zhuang X and Pan A 2015 Sci. Bull. 60 1674
[48] Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y and Yan B and Peng H 2020 Angew. Chem. 59 17938
[49] Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H and Zhang Q 2021 Adv. Funct. Mater. 31 2010263
[50] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, HasanT, Tan P and Hu P 2016 Adv. Funct. Mater. 26 2648
[51] Fan C, Bi K, Shu Z, Xu X, Dai B, Wang S, Qi Z, Wei J, Duan H and Zhang Q 2020 J. Phys. D-Appl. Phys. 53 235105
[52] Liu X, Li R, Hong C, Huang G, Pan D, Ni Z, Huang Y, Ren X, Cheng Y and Huang W 2019 Nanoscale 11 20707
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[3] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[4] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[5] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[6] Anisotropic photoresponse of layered rhenium disulfide synaptic transistors
Chunhua An(安春华), Zhihao Xu(徐志昊), Jing Zhang(张璟), Enxiu Wu(武恩秀), Xinli Ma(马新莉), Yidi Pang(庞奕荻), Xiao Fu(付晓), Xiaodong Hu(胡晓东), Dong Sun(孙栋), Jinshui Miao(苗金水), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(8): 088503.
[7] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[8] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[9] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[10] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[11] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[12] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[13] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[14] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[15] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
No Suggested Reading articles found!