INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse |
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林)† |
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract Bi$_{2}$O$_{2}$Se has been proved to be a promising candidate for electronic and optoelectronic devices due to their unique physical properties. However, it is still a great challenge to construct the heterostructures with direct epitaxy of hetero semiconductor materials on Bi$_{2}$O$_{2}$Se nanosheets. Here, a two-step chemical vapor deposition (CVD) route was used to directly grow the CsPbBr$_{3}$ nanoplate-Bi$_{2}$O$_{2}$Se nanosheet heterostructures. The CsPbBr$_{3}$ nanoplates were selectively grown on the Bi$_{2}$O$_{2}$Se nanosheet along the edges, where the dangling bonds provide the nucleation sites. The epitaxial relationships between CsPbBr$_{3}$ and Bi$_{2}$O$_{2}$Se were determined as ${[200]}_{\rm Bi_{2}O_{2}Se}||{[110]}_{\rm CsPbBr_{3}}$ and ${[110]}_{\rm Bi_{2}O_{2}Se}||{[200]}_{\rm CsPbBr_{3}}$ by transmission electron microscopy characterization. The photoluminescence (PL) results reveal that the formation of heterostructures results in the remarkable PL quenching due to the type-I band arrangement at CsPbBr$_{3}$/Bi$_{2}$O$_{2}$Se interface, which was confirmed by ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe measurements, and makes the photogenerated carriers transfer from CsPbBr$_{3}$ to Bi$_{2}$O$_{2}$Se. Importantly, the photodetectors based on the heterostructures exhibit a 4-time increase in the responsivity compared to those based on the pristine Bi$_{2}$O$_{2}$Se sheets, and the fast rise and decay time in microsecond. These results indicate that the direct epitaxy of the CsPbBr$_{3}$ plates on the Bi$_{2}$O$_{2}$Se sheet may improve the optoelectronic performance of Bi$_{2}$O$_{2}$Se based devices.
|
Received: 15 May 2021
Revised: 23 September 2021
Accepted manuscript online: 29 September 2021
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: The authors are grateful to the National Natural Science Foundation of China (Grant No. 51772088) and Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX20200422), and thank Prof. Huigao Duan for the help of the PL measurements. |
Corresponding Authors:
Qinglin Zhang
E-mail: qinglin.zhang@hnu.edu.cn
|
Cite this article:
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林) Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse 2022 Chin. Phys. B 31 048102
|
[1] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474 [2] Yao J D and Yang G W 2021 Nano Today 36 101026 [3] Liu Y, Huang Y and Duan X 2019 Nature 567 323 [4] Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Nat. Nanotechnol. 15 545 [5] Wang Y, Gao M, Wu J and Zhang X 2019 Chin. Phys. B 28 018502 [6] Yue H, Hu A, Liu Q, Tian H, Hu C, Ren X, Chen N, Ge C, Jin K and Guo X 2021 Chin. Phys. B 30 038502 [7] Zhou M, Zhao Y, Bian L, Zhang J, Yang W, Wu Y, Xing Z, Jiang M and Lu S 2021 Chin. Phys. B 30 078506 [8] Wen H, Xiong L, Tan C, Zhu K, Tang Y, Wang J and Zhong X 2021 Chin. Phys. B 30 057803 [9] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M and Peng H 2017 Nano Lett. 17 3021 [10] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F and Koppens F H 2012 Nat. Nanotechnol. 7 363 [11] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F, Tay B K, Zhang H, Pennycook S J and Liu Z 2019 Adv. Mater. 31 1804945 [12] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K and Peng H 2018 Nat. Commun. 9 3311 [13] Zhu C, Tong T, Liu Y, Meng Y, Nie Z, Wang X, Xu Y, Shi Y, Zhang R and Wang F 2018 Appl. Phys. Lett. 113 061104 [14] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G and Biswas K 2019 Nano Lett. 19 5703 [15] Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B and Cheng H M 2019 Adv. Funct. Mater. 29 1807979 [16] Wu Z, Liu G, Wang Y, Yang X, Wei T, Wang Q, Liang J, Xu N, Li Z, Zhu B, Qi H, Deng Y and Zhu J 2019 Adv. Funct. Mater. 29 1906639 [17] Hong C, Tao Y, Nie A, Zhang M, Wang N, Li R, Huang J, Huang Y, Ren X, Cheng Y and Liu X 2020 ACS Nano 14 16803 [18] Li T, Tu T, Sun Y, Fu H, Yu J, Xing L, Wang Z, Wang H, Jia R, Wu J, Tan C, Liang Y, Zhang Y, Zhang C, Dai Y, Qiu C, Li M, Huang R, Jiao L, Lai K, Yan B, Gao P and Peng H 2020 Nat. Electron. 3 473 [19] Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J and Ni Z 2020 Adv. Mater. 33 2004786 [20] Chen Y, Ma W, Tan C, Luo M, Zhou W, Yao N, Wang H, Zhang L, Xu T, Tong T, Zhou Y, Xu Y, Yu C, Shan C, Peng H, Yue F, Wang P, Huang Z and Hu W 2021 Adv. Funct. Mater. 31 2009554 [21] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H and Di D 2018 Nat. Photonics 12 783 [22] Fan C, Xu X, Yang K, Jiang F, Wang S and Zhang Q 2018 Adv. Mater. 30 1804707 [23] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790 [24] Zhang Q, Liu H, Guo P, Li D, Fan P, Zheng W, Zhu X, Jiang Y, Zhou H, Hu W, Zhuang X, Liu H, Duan X and Pan A 2017 Nano Energ. 32 28 [25] Yang C M, Chen T C, Verma D, Li L J, Liu B, Chang W H and Lai C S 2020 Adv. Funct. Mater. 30 2001598 [26] Yang T, Li X, Wang L, Liu Y, Chen K, Yang X, Liao L, Dong L and Shan C X 2019 J. Mater. Sci. 54 14742 [27] Luo P, Wang F, Qu J, Liu K, Hu X, Liu K and Zhai T 2020 Adv. Funct. Mater. 31 2008351 [28] Xu Y, Zhou R, Yin Q, Li J, Si G and Zhang H 2021 Chin. Phys. B 30 077304 [29] Li Y, Huang L, Li B, Wang X, Zhou Z, Li J and Wei Z 2016 ACS Nano 10 8938 [30] Zhang Q, Zhu X, Li Y, Liang J, Chen T, Fan P, Zhou H, Hu W, Zhuang X and Pan A 2016 Laser Photon. Rev. 10 458 [31] Luo P, Zhuge F, Wang F, Lian L, Liu K, Zhang J and Zhai T 2019 ACS Nano 13 9028 [32] Li N, Wen Y, Cheng R, Yin L, Wang F, Li J, Shifa T A, Feng L, Wang Z and He J 2019 Appl. Phys. Lett. 114 103501 [33] Chen T, Fan C, Zhou W, Zou X, Xu X, Wang S, Wan Q and Zhang Q 2019 Appl. Phys. Express. 12 055005 [34] Adinolfi V and Sargent E H 2017 Nature 542 324 [35] Guo H W, Hu Z, Liu Z B and Tian J G 2020 Adv. Funct. Mater. 31 2007810 [36] Xu X, Fan C, Wang Y, Qi Z, Dai B, Jiang H, Wang S and Zhang Q 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000384 [37] Zhai X, Xu X, Peng J, Jing F, Zhang Q, Liu H and Hu Z 2020 ACS Appl. Mater. Interfaces 12 24093 [38] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, Hasan T, Tan Pand Hu P A 2016 Adv. Funct. Mater. 26 2648 [39] Wen Y, Yin L, He P, Wang Z, Zhang X, Wang Q, Shifa T A, Xu K, Wang F, Zhan X, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437 [40] Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B and Zhang Q 2019 ACS Nano 13 10085 [41] Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach and Yang X 2019 Nano Lett. 19 6315 [42] Fakharuddin A, Shabbir U, Qiu W, Iqbal T, Sultan M, Heremans P and Lukas Schmidt L 2019 Adv. Mater. 31 1807095 [43] Fang Q, Shang Q, Zhao L, Wang R, Zhang Z, Yang P, Sui X, Qiu X, Liu X, Zhang Q and Zhang Y 2018 J. Phys. Chem. Lett. 9 1655 [44] Li H, Zheng X, Liu Y, Zhang Z and Jiang T 2018 Nanoscale 10 1650 [45] Noh T, Shin H, Seo C, Kim J, Youn J, Kim J, Lee K and Joo 2019 J. Nano Res. 12 405 [46] Zhang L, Shen S, Li M, Li L, Zhang J, Fan L, Cheng F, Li C, Zhu M,Kang Z, Su J, Zhai T and Gao Y 2019 Adv. Opt. Mater. 7 1801744 [47] Fan C, Zhang Q, Zhu X, Zhuang X and Pan A 2015 Sci. Bull. 60 1674 [48] Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y and Yan B and Peng H 2020 Angew. Chem. 59 17938 [49] Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H and Zhang Q 2021 Adv. Funct. Mater. 31 2010263 [50] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, HasanT, Tan P and Hu P 2016 Adv. Funct. Mater. 26 2648 [51] Fan C, Bi K, Shu Z, Xu X, Dai B, Wang S, Qi Z, Wei J, Duan H and Zhang Q 2020 J. Phys. D-Appl. Phys. 53 235105 [52] Liu X, Li R, Hong C, Huang G, Pan D, Ni Z, Huang Y, Ren X, Cheng Y and Huang W 2019 Nanoscale 11 20707 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|