Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107301    DOI: 10.1088/1674-1056/23/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator

An Xing-Tao (安兴涛)a b
a School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China;
b Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China
Abstract  The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulator is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrier, the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the current-voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltage, and then a large peak-to-valley current ratio can be obtained.
Keywords:  topological insulator      negative differential conductance      ferromagnetic barrier  
Received:  03 March 2014      Revised:  21 April 2014      Accepted manuscript online: 
PACS:  73.25.+i (Surface conductivity and carrier phenomena)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104059 and 61176089).
Corresponding Authors:  An Xing-Tao     E-mail:  anxt@hku.hk
About author:  73.25.+i; 73.23.-b; 85.35.Be

Cite this article: 

An Xing-Tao (安兴涛) Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator 2014 Chin. Phys. B 23 107301

[6]Mondal S, Sen D, Sengupta K and Shankar R 2010 Phys. Rev. Lett. 104 046403
[7]Wu Z, Peeters F M and Chang K 2010 Phys. Rev. B 82 115211
[1]Xi H, White R M, Mao S, Gao Z, Yang Z and Murdock E 2001 Phys. Rev. B 64 184416
[8]Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401
[2]Pina E, Prados C and Hernando A 2004 Phys. Rev. B 69 052402
[9]Zhang Y and Zhai F 2010 Appl. Phys. Lett. 96 172109
[3]Brems S, Buntinx D, Temst K, Van Haesendonck C, Radu F and Zabel H 2005 Phys. Rev. Lett. 95 157202
[10]Kong B D, Semenov Y G, Krowne C M and Kim K W 2011 Appl. Phys. Lett. 98 243112
[4]Brems S, Temst K and Van Haesendonck C 2007 Phys. Rev. Lett. 99 067201
[5]Polisetty S, Sahoo S and Binek C 2007 Phys. Rev. B 76 184423
[11]Zhai F and Mu P 2011 Appl. Phys. Lett. 98 022107
[12]Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
[13]Mizuta H and Tanoue T 1995 The Physics and Applications of Resonant Tunneling Diodes (Cambridge: Cambridge University Press)
[14]Tsu R 1973 Appl. Phys. Lett. 22 562
[6]Chan M K, Parker J S, Crowell P A and Leighton C 2008 Phys. Rev. B 77 014420
[7]Mishra S K, Radu F, Dürr H A and Eberhardt W 2009 Phys. Rev. Lett. 102 177208
[8]Shi Z, Du J, Chantrell R W, Mangin S and Zhou S M 2011 Appl. Phys. Lett. 98 122507
[9]Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2002 Phys. Rev. B 66 014431
[10]Binek C 2004 Phys. Rev. B 70 014421
[15]Sollner T C L G 1983 Appl. Phys. Lett. 43 588
[16]Dragoman D and Dragoman M 2007 Appl. Phys. Lett. 90 143111
[11]Hoffmann A 2004 Phys. Rev. Lett. 93 097203
[17]Do V N 2008 Appl. Phys. Lett. 92 216101
[12]Qiu X P, Yang D Z, Zhou S M, Chantrell R, O'Grady K, Nowak U, Du J, Bai X J and Sun L 2008 Phys. Rev. Lett. 101 147207
[18]Wang Z F, Li Q, Shi Q W, Wang X, Yang J, Hou J G and Chen J 2008 Appl. Phys. Lett. 92 133114
[13]Fulara H, Chaudhary S and Kashyap S C 2012 Appl. Phys. Lett. 101 142408
[19]Ren H, Li Q, Luo Y and Yang J 2009 Appl. Phys. Lett. 94 173110
[14]Shi Z, Qiu X P, Zhou S M, Bai X J and Du J 2008 Appl. Phys. Lett. 93 222504
[20]Do V N and Dollfus P 2010 J. Appl. Phys. 107 063705
[15]Maity T, Goswami S, Bhattacharya D and Roy S 2013 Phys. Rev. Lett. 110 107201
[21]Ferreira G J, Leuenberger M N, Loss D and Egues J C 2011 Phys. Rev. B 84 125453
[16]Harres A and Geshev J 2011 J. Phys.: Condens. Matter 23 216003
[22]Nguyen V H, Mazzamuto F, Saint-Martin J, Bournel A and Dollfus P 2011 Appl. Phys. Lett. 99 042105
[17]Kaeswurm B and O'Grady K 2011 Appl. Phys. Lett. 99 222508
[23]Zhao P, Liu D S, Li S J and Chen G 2012 Chem. Phys. Lett. 554 172
[24]Song Y, Wu H C and Guo Y 2013 Appl. Phys. Lett. 102 093118
[18]Ali M, Adie P, Marrows C H, Greig D, Hickey B J and Stamps R L 2007 Nat. Mater. 6 70
[25]Maciejko J, Kim E A and Qi X L 2010 Phys. Rev. B 82 195409
[26]Wu Z, Peeters F M and Chang K 2011 Appl. Phys. Lett. 98 162101
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[3] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[6] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[7] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[8] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[9] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
No Suggested Reading articles found!