CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator |
An Xing-Tao (安兴涛)a b |
a School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China; b Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China |
|
|
Abstract The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulator is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrier, the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the current-voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltage, and then a large peak-to-valley current ratio can be obtained.
|
Received: 03 March 2014
Revised: 21 April 2014
Accepted manuscript online:
|
PACS:
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104059 and 61176089). |
Corresponding Authors:
An Xing-Tao
E-mail: anxt@hku.hk
|
About author: 73.25.+i; 73.23.-b; 85.35.Be |
Cite this article:
An Xing-Tao (安兴涛) Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator 2014 Chin. Phys. B 23 107301
|
|
| [6] | Mondal S, Sen D, Sengupta K and Shankar R 2010 Phys. Rev. Lett. 104 046403
|
|
| [7] | Wu Z, Peeters F M and Chang K 2010 Phys. Rev. B 82 115211
|
|
| [1] | Xi H, White R M, Mao S, Gao Z, Yang Z and Murdock E 2001 Phys. Rev. B 64 184416
|
|
| [8] | Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401
|
|
| [2] | Pina E, Prados C and Hernando A 2004 Phys. Rev. B 69 052402
|
|
| [9] | Zhang Y and Zhai F 2010 Appl. Phys. Lett. 96 172109
|
|
| [3] | Brems S, Buntinx D, Temst K, Van Haesendonck C, Radu F and Zabel H 2005 Phys. Rev. Lett. 95 157202
|
|
| [10] | Kong B D, Semenov Y G, Krowne C M and Kim K W 2011 Appl. Phys. Lett. 98 243112
|
|
| [4] | Brems S, Temst K and Van Haesendonck C 2007 Phys. Rev. Lett. 99 067201
|
|
| [5] | Polisetty S, Sahoo S and Binek C 2007 Phys. Rev. B 76 184423
|
|
| [11] | Zhai F and Mu P 2011 Appl. Phys. Lett. 98 022107
|
|
| [12] | Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
|
|
| [13] | Mizuta H and Tanoue T 1995 The Physics and Applications of Resonant Tunneling Diodes (Cambridge: Cambridge University Press)
|
|
| [14] | Tsu R 1973 Appl. Phys. Lett. 22 562
|
|
| [6] | Chan M K, Parker J S, Crowell P A and Leighton C 2008 Phys. Rev. B 77 014420
|
|
| [7] | Mishra S K, Radu F, Dürr H A and Eberhardt W 2009 Phys. Rev. Lett. 102 177208
|
|
| [8] | Shi Z, Du J, Chantrell R W, Mangin S and Zhou S M 2011 Appl. Phys. Lett. 98 122507
|
|
| [9] | Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2002 Phys. Rev. B 66 014431
|
|
| [10] | Binek C 2004 Phys. Rev. B 70 014421
|
|
| [15] | Sollner T C L G 1983 Appl. Phys. Lett. 43 588
|
|
| [16] | Dragoman D and Dragoman M 2007 Appl. Phys. Lett. 90 143111
|
|
| [11] | Hoffmann A 2004 Phys. Rev. Lett. 93 097203
|
|
| [17] | Do V N 2008 Appl. Phys. Lett. 92 216101
|
|
| [12] | Qiu X P, Yang D Z, Zhou S M, Chantrell R, O'Grady K, Nowak U, Du J, Bai X J and Sun L 2008 Phys. Rev. Lett. 101 147207
|
|
| [18] | Wang Z F, Li Q, Shi Q W, Wang X, Yang J, Hou J G and Chen J 2008 Appl. Phys. Lett. 92 133114
|
|
| [13] | Fulara H, Chaudhary S and Kashyap S C 2012 Appl. Phys. Lett. 101 142408
|
|
| [19] | Ren H, Li Q, Luo Y and Yang J 2009 Appl. Phys. Lett. 94 173110
|
|
| [14] | Shi Z, Qiu X P, Zhou S M, Bai X J and Du J 2008 Appl. Phys. Lett. 93 222504
|
|
| [20] | Do V N and Dollfus P 2010 J. Appl. Phys. 107 063705
|
|
| [15] | Maity T, Goswami S, Bhattacharya D and Roy S 2013 Phys. Rev. Lett. 110 107201
|
|
| [21] | Ferreira G J, Leuenberger M N, Loss D and Egues J C 2011 Phys. Rev. B 84 125453
|
|
| [16] | Harres A and Geshev J 2011 J. Phys.: Condens. Matter 23 216003
|
|
| [22] | Nguyen V H, Mazzamuto F, Saint-Martin J, Bournel A and Dollfus P 2011 Appl. Phys. Lett. 99 042105
|
|
| [17] | Kaeswurm B and O'Grady K 2011 Appl. Phys. Lett. 99 222508
|
|
| [23] | Zhao P, Liu D S, Li S J and Chen G 2012 Chem. Phys. Lett. 554 172
|
|
| [24] | Song Y, Wu H C and Guo Y 2013 Appl. Phys. Lett. 102 093118
|
|
| [18] | Ali M, Adie P, Marrows C H, Greig D, Hickey B J and Stamps R L 2007 Nat. Mater. 6 70
|
|
| [25] | Maciejko J, Kim E A and Qi X L 2010 Phys. Rev. B 82 195409
|
|
| [26] | Wu Z, Peeters F M and Chang K 2011 Appl. Phys. Lett. 98 162101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|