Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107302    DOI: 10.1088/1674-1056/23/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of optoelectronic properties of TiO2 nanowiers/Si heterojunction arrays

Saeideh Ramezani Sani
Department of Physics, Roudehen Branch, Islamic Azad University, Roudehen, Iran
Abstract  The optoelectronic properties of n-TiO2NW/p-Si heterojunction fabricated by depositing TiO2 nanowires on a p-Si substrate are studied. Under excitation at a wavelength of 370 nm, the TiO2 nanowires produce a light emission at 435 nm due to the emission of free excitons. The I-V characteristics are measured to investigate the heterojunction effects under the dark environment and ultraviolet (UV) illumination. n-TiO2NW/p-Si has a p-n junction formed in the n-TiO2/p-Si heterojunction. TiO2NW/Si photodiode produces a photocurrent larger than dark current under UV illumination. It is observed that UV photons are absorbed in TiO2 and the heterojunction shows a 0.034-A/W responsivity at 4-V reverse bias.
Keywords:  TiO2 nanowires      photoresponse      I-V characteristics      heterojunction  
Received:  25 October 2013      Revised:  19 February 2014      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Corresponding Authors:  Saeideh Ramezani Sani     E-mail:  ramezanisani@yahoo.com,_ramezani@riau.ac.ir
About author:  73.40.Kp; 73.40.lq; 73.50.pz; 78.67.-n

Cite this article: 

Saeideh Ramezani Sani Analysis of optoelectronic properties of TiO2 nanowiers/Si heterojunction arrays 2014 Chin. Phys. B 23 107302

[8]Du G H, Chen Q, Che R C, Yuan Z Y and Peng L M 2001 Appl. Phys. Lett. 79 3702
[9]Wang S Z, Zhang S H and Shen J 2009 Acta Phys. Sin. 58 7017 (in Chinese)
[1]Franco A and Silva F C 2010 Appl. Phy. Lett. 96 172505
[2]Zhang R C, Liu L and Xu X L 2011 Chin. Phys. B 20 086101
[3]Wang W J, Zang C G and Jiao Q J 2013 Chin. Phys. B 22 128101
[10]Tsai T Y, Chang S J, Hsueh T J, Hsueh H T, Weng W Y, Hsu C L and Dai B T 2011 Nanoscale Research Lett. 6 575
[4]Zhou X, Hou Z L, Li F and Qi X 2010 Chin. Phys. Lett. 27 117501
[5]Liu J H, Zhang L F, Tian G F, Li J C and Li F S 2007 Acta Phys. Sin. 56 6050 (in Chinese)
[11]Wang D H, Jia L, Wu X L, Lu L Q and Xu A W 2012 Nanoscale 4 576
[6]Jeng H T, Guo G Y and Huang D J 2004 Phys. Rev. Lett. 93 156403
[12]Hsu H C, Cheng C S, Cang C C, Yang S C, Chang S and Hsieh W F 2005 Nanotechnology 16 297
[7]Mohamed R M, Rashad M M, Haraz F A and Sigmund W 2010 J. Magn. Magn. Mater. 322 2058
[8]Chikazumi S 1997 Physics of Ferromagnetism 2e (London: Oxford University Press) pp. 150-180
[13]Keis K and Roos A 2002 J. Opt. Mater. 20 35
[9]Cojocariu A M, Soroceanu M, Hrib L, Nica V and Caltun O F 2012 Mater. Chem. Phys. 135 728
[10]Chae K P, Lee Y B, Lee J G and Lee S H 2000 J. Magn. Magn. Mater. 220 59
[14]Grabner L, Stokwski S E and Brower W S 1970 Phys. Rev. B 2 590
[11]Singhal S, Jauhar S, Singh J, Chandra K and Bansal S 2012 J. Mol. Struct. 1012 182
[15]Chang Y H, Liu C M, Tseng Y C, Chen C, Chen C C and Cheng H E 2010 Nanotechnology 21 225602
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[12] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!