Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037304    DOI: 10.1088/1674-1056/23/3/037304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Finite size effects on helical edge states in HgTe quantum wells with the spin–orbit coupling due to bulk-and structure-inversion asymmetries

Cheng Zhi (成志), Zhou Bin (周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin–orbit coupling due to bulk-and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk-and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk-and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
Keywords:  quantum spin Hall state      finite size effect      spin–      orbit coupling  
Received:  21 September 2013      Revised:  26 November 2013      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
Corresponding Authors:  Zhou Bin     E-mail:  binzhou@hubu.edu.cn

Cite this article: 

Cheng Zhi (成志), Zhou Bin (周斌) Finite size effects on helical edge states in HgTe quantum wells with the spin–orbit coupling due to bulk-and structure-inversion asymmetries 2014 Chin. Phys. B 23 037304

[1] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[2] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[3] Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
[4] Brüne C, Roth A, Buhmann H, Hankiewicz E M, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2012 Nature Phys. 8 485
[5] Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nature Mater. 12 787
[6] König M, Baenninger M, Garcia A G F, Harjee N, Pruitt B L, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W and Goldhaber-Gordon D 2013 Phys. Rev. X 3 021003
[7] Ma Y, Kundhikanjana W, Wang J, Calvo M R, Lian B, Yang Y, Lai K, Baenninger M, König M, Ames C, Brüne C, Buhmann H, Leubner P, Tang Q, Zhang K, Li X, Molenkamp L W, Zhang S C, Goldhaber-Gordon D, Kelly M A and Shen Z X 2012 arXiv:1212.6441v1 [cond-mat]
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[9] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[10] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[11] Murakami S 2006 Phys. Rev. Lett. 97 236805
[12] Liu C X, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[13] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[14] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[15] Yang W M, Lin C J, Liao J and Li Y Q 2013 Chin. Phys. B 22 097202
[16] He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[17] Wang J and Zhu B F 2013 Chin. Phys. B 22 067301
[18] Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[19] Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
[20] Guo H M and Feng S P 2012 Chin. Phys. B 21 077303
[21] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
[22] Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nature Phys. 6 448
[23] Linder J, Yokoyama T and SudboA 2009 Phys. Rev. B 80 205401
[24] Liu C X, Zhang H J, Yan B H, Qi X L, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 81 041307
[25] Lu H Z, Shan W Y, Yao W, Niu Q and Shen S Q 2010 Phys. Rev. B 81 115407
[26] Shan W Y, Lu H Z and Shen S Q 2010 New J. Phys. 12 043048
[27] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nature Phys. 6 584
[28] König M, Buhmann H, Molenkamp L W, Hughes T L, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
[29] Rothe D G, Reinthaler R W, Liu C X, Molenkamp L W, Zhang S C and Hankiewicz E M 2010 New J. Phys. 12 065012
[30] Krueckl V and Richter K 2012 Semicond. Sci. Technol. 27 124006
[31] Takagaki Y 2012 J. Phys.: Condens. Matter 24 435301
[32] Virtanen P and Recher P 2012 Phys. Rev. B 85 035310
[33] Zou Y L, Zhang L B and Song J T 2013 J. Phys.: Condens. Matter 25 075801
[34] Krueckl V and Richter K 2011 Phys. Rev. Lett. 107 086803
[35] Takagaki Y 2012 Phys. Rev. B 85 155308
[36] Michetti P, Penteado P H, Egues J C and Recher P 2012 Semicond. Sci. Technol. 27 124007
[37] Ostrovsky P M, Gornyi I V and Mirlin A D 2012 Phys. Rev. B 86 125323
[38] Weithofer L and Recher P 2013 New J. Phys. 15 085008
[39] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[40] Cooper L J, Patel N K, Drouot V, Linfield E H, Ritchie D A and Pepper M 1998 Phys. Rev. B 57 11915
[41] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[42] Zhang T, Ha J, Levy N, Kuk Y and Stroscio J 2013 Phys. Rev. Lett. 111 056803
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[14] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!