CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin and valley half metal induced by staggered potential and magnetization in silicene |
Wang Sa-Ke (汪萨克), Tian Hong-Yu (田宏玉), Yang Yong-Hong (杨永宏), Wang Jun (汪军) |
Department of Physics, Southeast University, Nanjing 210096, China |
|
|
Abstract We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is shown that the silicene could be a spin and valley half metal under appropriate parameters when the spin–orbit interaction is considered; further, the filtered spin and valley could be controlled by modulating the staggered potential or magnetization. It is also found that in the spin-valve structure of silicene, not only can the antiparallel magnetization configuration significantly reduce the valve-structure conductance, but the reversing staggered electric potential can cause a high-performance magnetoresistance due to the spin and valley blocking effects. Our findings show that the silicene might be an ideal basis for the spin and valley filter analyzer devices.
|
Received: 08 May 2013
Revised: 05 August 2013
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074032, 11074233, and 11274079) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284). |
Corresponding Authors:
Wang Jun
E-mail: jwang@seu.edu.cn
|
Cite this article:
Wang Sa-Ke (汪萨克), Tian Hong-Yu (田宏玉), Yang Yong-Hong (杨永宏), Wang Jun (汪军) Spin and valley half metal induced by staggered potential and magnetization in silicene 2014 Chin. Phys. B 23 017203
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[2] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[3] |
Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
|
[4] |
Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
|
[5] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[6] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[7] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[8] |
Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
|
[9] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[10] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[11] |
Ezawa M 2012 New J. Phys. 14 033003
|
[12] |
Ezawa M 2012 J. Phys. Soc. Jpn. 81 064705
|
[13] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[14] |
Ezawa M 2013 Phys. Rev. Lett. 110 026603
|
[15] |
Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
|
[16] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[17] |
Mak K, He K, Shan J and Heinz T 2012 Nat. Nanotechnol. 7 494
|
[18] |
Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
|
[19] |
Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L and Urbaszek B 2012 Phys. Rev. B 86 081301
|
[20] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[21] |
Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G 2010 Appl. Phys. Lett. 96 261905
|
[22] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[23] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[24] |
Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
|
[25] |
Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara T, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nature Mater. 9 894
|
[26] |
Tian H Y, Yang Y H, Chan K S and Wang J 2012 Phys. Rev. B 86 245413
|
[27] |
Wang J and Liu S 2012 Phys. Rev. B 85 035402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|