CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations |
Jing-Fen Zhao(赵敬芬)†, Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟) |
School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250100, China |
|
|
Abstract Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics. Using nonequilibrium Green's function combined with density functional theory, a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied. The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping. Remarkably, by tuning the edge hydrogenation, it is found that the spin filter efficiency can be varied from 30% to 58%. Moreover, it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction. These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications.
|
Received: 25 March 2021
Revised: 27 May 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11574118) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019PEM006). |
Corresponding Authors:
Jing-Fen Zhao
E-mail: jingfenzhao@163.com
|
Cite this article:
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟) Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations 2022 Chin. Phys. B 31 017302
|
[2] Fleurence A and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501 [3] Meng L, Wang Y, Zhang L, Zhang Y and Gao H J 2013 Nano Lett. 13 685 [4] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115 [5] Cahangirov S and Topsakal M 2009 Phys. Rev. Lett. 102 236804 [6] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [7] Huang S, Kang W and Yang L 2013 Appl. Phys. Lett. 102 133106 [8] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [9] Ezawa M 2012 Phys. Rev. Lett. 109 055502 [10] Xu C Y, Luo G F, Zheng J X, Zhang Z M and Lu J 2012 Nanoscale 4 3111 [11] Houssa M, Dimoulas A and Molle A 2015 J. Phys.: Condens. Matter 27 253002 [12] Xiang H, Kan E and Yang J 2009 Nano Lett. 9 4025 [13] Cai J M, Pignedoli C A, Talirz L 2014 Nat. Nanotechnol. 11 896 [14] Zou D Q, Cui B and Liu D S 2015 Phys. Chem. Chem. Phys. 17 11292 [15] Ren Y and Chen K Q 2010 J. Appl. Phys. 107 044514 [16] Sahin H, Cahangirov S, Topsakal M, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453 [17] Fan Z Q, Xie F, Jiang X W, Wei Z M and Li S S 2016 Carbon 110 200 [18] Fan Z Q, Sun W Y, Jiang X W and Long M Q 2017 Carbon 113 18 [19] Cahangirov S and Topsakal M 2009 Phys. Rev. Lett. 102 236804 [20] Deng X Q, Zhang Z H, Fan Z Q and Yang C H 2014 RSC Adv. 4 58941 [21] Cahangirov S, Topsakal M and Ciraci S 2009 Phys. Rev. Lett. 102 236804 [22] Kara A, Enriquez H, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1 [23] De Padova P, Perfetti P, Olivieri B, Quaresima C, Ottaviani C and Le Lay G 2012 J. Phys.: Condens. Matter 24 223001 [24] Ni Z, Liu Q, Tang K, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113 [25] Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122 [26] Pan L, Liu H J and Zheng G 2012 Phys. Chem. Chem. Phys. 14 13588 [27] Yang X F, Liu Y S and Chi F 2014 J. Appl. Phys. 116 124312 [28] Luan H X, Zhang C W and Wang P J 2013 J. Phys. Chem. C 117 13620 [29] Fang D Q, Zhang S L and Xu H 2013 RSC Adv. 3 24075 [30] Zheng F B, Zhang C W, Yan S S and Li F 2013 J. Mater. Chem. C 1 2735 [31] Ding Y and Wang Y 2013 Appl. Phys. Lett. 102 143115 [32] Zhang D, Long M Q and Zhang X J 2014 Chem. Phys. Lett. 616 178 [33] Zeng J, Chen K Q, He J, Zhang X J and Sun C Q 2011 J. Phys. Chem. C 115 25072 [34] Zhao J F, Fang C F, Cui B and Liu D S 2017 Org. Electron. 41 333 [35] Chen A B, Wang X F and Liu Y S 2014 Phys. Chem. Chem. Phys. 16 5113 [36] Hu G C, Zuo M Y and Xie S J 2014 Appl. Phys. Lett. 104 033302 [37] Brandbyge M, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [38] Soler J M, Artacho E, Junquera J and Ordejon P 2002 J. Phys.: Condens. Matter 14 2745 [39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104 [40] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [41] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 [42] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802 [43] Fan Z Q, Deng X Q, Tang G P and Chen K Q 2013 Appl. Phys. Lett. 102 023508 [44] Xie Fang, Fan Z Q, Liu K, Yu J H and Chen K Q 2015 Org. Electron. 27 41 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|