Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057801    DOI: 10.1088/1674-1056/27/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-current pump in silicene

John Tombe Jada Marcellino1, Mei-Juan Wang(王美娟)1, Sa-Ke Wang(汪萨克)2, Jun Wang(汪军)1
1 Department of Physics, Southeast University, Nanjing 210096, China;
2 Department of Fundamental Courses, Jinling Institute of Technology, Nanjing 211169, China
Abstract  

We report a theoretical study of pumped spin currents in a silicene-based pump device, where two time-dependent staggered potentials are introduced through the perpendicular electric fields and a magnetic insulator is considered in between the two pumping potentials to magnetize the Dirac electrons. It is shown that giant spin currents can be generated in the pump device because the pumping can be optimal for each transport mode, the pumping current is quantized. By controlling the relevant parameters of the device, both pure spin currents and fully spin-polarized currents can be obtained. Our results may shed a new light on the generation of pumped spin currents in Dirac-electron systems.

Keywords:  spin currents      charge pump      quantization      silicene  
Received:  10 January 2018      Revised:  26 February 2018      Accepted manuscript online: 
PACS:  78.20.Jq (Electro-optical effects)  
  71.70.Fk (Strain-induced splitting)  
  72.80.Vp (Electronic transport in graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11274059,11574045,and 11704165).

Corresponding Authors:  Jun Wang     E-mail:  jwang@seu.edu.cn

Cite this article: 

John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军) Spin-current pump in silicene 2018 Chin. Phys. B 27 057801

[1] Ž utić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Shakouri K, Masir M R, Jellal A, Choubabi E B and Peeters F M 2013 Phys. Rev. B 88 115408
[3] Szaszkó-Bogár V, Peeters F M and Földi P 2015 Phys. Rev. B 91 235311
[4] Akturk A and Goldsman N 2008 J. Appl. Phys. 103 053702
[5] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[7] Tombros N, Tanabe S, Veligura A, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2008 Phys. Rev. Lett. 101 46601
[8] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[9] Vogt P, Padova P de, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[10] Lin C-L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Exp. 5 45802
[11] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[12] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 76802
[13] Ezawa M 2012 Phys. Rev. Lett. 109 55502
[14] Makhlin Yu and Mirlin A D 2001 Phys. Rev. Lett. 87 276803
[15] Zhou F, Spivak B and Altshuler B 1999 Phys. Rev. Lett. 82 608
[16] Brouwer P W 1998 Phys. Rev. B 58 R10135
[17] Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
[18] Zhang Q, Chan K S, Lin Z and Liu J F 2013 Phys. Lett. A 377 632
[19] Wang J, Chan K S and Lin Z 2014 Appl. Phys. Lett. 104 013105
[20] Abdollahipour B and Mohammadkhani R 2014 J. Phys.:Condens. Matter 26 85304
[21] Chen M N, Sheng L, Shen R, Sheng D N and Xing D Y 2015 Phys. Rev. B 91 125117
[22] Deng W Y, Luo W, Geng H, Chen M N, Sheng L and Xing D Y 2015 New J. Phys. 17 103018
[23] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[24] Luo W, Sheng L, Wang B G and Xing D Y 2016 Sci. Rep. 6 31325
[25] Wang J and Liu J F 2017 Phys. Rev. B 95 205433
[26] Büttiker M, Thomas H and Prêtre A 1994 Z. Phys. B:Condens. Matter 94 133
[1] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[2] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[3] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[4] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[5] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[6] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[7] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[8] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[9] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[10] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[11] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[12] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[13] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[14] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[15] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
No Suggested Reading articles found!