CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields |
Jianfei Zou(邹剑飞), Jing Kang(康静) |
College of Science, Hohai University, Nanjing 210098, China |
|
|
Abstract Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.
|
Received: 12 September 2017
Revised: 22 December 2017
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347127, 61404044, and 11347111). |
Corresponding Authors:
Jianfei Zou
E-mail: zoujianfei@hhu.edu.cn
|
Cite this article:
Jianfei Zou(邹剑飞), Jing Kang(康静) Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields 2018 Chin. Phys. B 27 037301
|
[1] |
Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[2] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[3] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[4] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[5] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[6] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[7] |
Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
|
[8] |
Ezawa M 2012 Phys. Rev. B 86 161407
|
[9] |
Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
|
[10] |
Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
|
[11] |
Zou J, Tang C and Zhang A 2017 Phys. Lett. A 381 1197
|
[12] |
Léandri C, Oughaddou H, Aufray B, Gay J M, Le Lay G, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262
|
[13] |
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
|
[14] |
Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
|
[15] |
Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[16] |
Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
|
[17] |
Liang Y, Wang V, Mizuseki H and Kawazoe Y 2012 J. Phys.:Condens. Matter 24 455302
|
[18] |
Lian C, Yang Z and Ni J 2013 Chem. Phys. Lett. 561 77
|
[19] |
Mahmoudi M, Ahangari Z and Fathipour M 2016 Chin. Phys. B 25 018501
|
[20] |
Ma L, Zhang J M, Xu K W and Ji V 2013 Physica B 425 66
|
[21] |
Cano-Cortés L, Ortix C and van den Brink J 2013 Phys. Rev. Lett. 111 146801
|
[22] |
Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401
|
[23] |
Bao H, Liao W, Guo J, Yang X, Zhao H and Zhou G 2015 J. Phys. D:Appl. Phys. 48 455306
|
[24] |
Liao W, Bao H, Zhang X, Yang X, Zhang Z and Zhao H 2016 Appl. Phys. A 122 464
|
[25] |
Shyu F L 2017 Physica E 85 117
|
[26] |
Shyu F L 2017 Physica E 87 178
|
[27] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[28] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[29] |
Zou J, Jin G and Ma Y Q 2009 J. Phys.:Condens. Matter 21 126001
|
[30] |
Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711
|
[31] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[32] |
Sasaki K I, Kato K, Tokura Y, Oguri K and Sogawa T 2011 Phys. Rev. B 84 085458
|
[33] |
Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
|
[34] |
Zhou B, Zhou B, Chen X, Liao W and Zhou G 2015 J. Phys.:Condens. Matter 27 465301
|
[35] |
Liao W, Zhou G and Xi F 2008 J. Appl. Phys. 104 126105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|