Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037301    DOI: 10.1088/1674-1056/27/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields

Jianfei Zou(邹剑飞), Jing Kang(康静)
College of Science, Hohai University, Nanjing 210098, China
Abstract  Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.
Keywords:  silicene nanoribbon      edge state      optical conductivity      exchange field  
Received:  12 September 2017      Revised:  22 December 2017      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347127, 61404044, and 11347111).
Corresponding Authors:  Jianfei Zou     E-mail:  zoujianfei@hhu.edu.cn

Cite this article: 

Jianfei Zou(邹剑飞), Jing Kang(康静) Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields 2018 Chin. Phys. B 27 037301

[1] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[2] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[3] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[4] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[5] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[6] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[7] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[8] Ezawa M 2012 Phys. Rev. B 86 161407
[9] Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
[10] Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
[11] Zou J, Tang C and Zhang A 2017 Phys. Lett. A 381 1197
[12] Léandri C, Oughaddou H, Aufray B, Gay J M, Le Lay G, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262
[13] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[14] Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
[15] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[16] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[17] Liang Y, Wang V, Mizuseki H and Kawazoe Y 2012 J. Phys.:Condens. Matter 24 455302
[18] Lian C, Yang Z and Ni J 2013 Chem. Phys. Lett. 561 77
[19] Mahmoudi M, Ahangari Z and Fathipour M 2016 Chin. Phys. B 25 018501
[20] Ma L, Zhang J M, Xu K W and Ji V 2013 Physica B 425 66
[21] Cano-Cortés L, Ortix C and van den Brink J 2013 Phys. Rev. Lett. 111 146801
[22] Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401
[23] Bao H, Liao W, Guo J, Yang X, Zhao H and Zhou G 2015 J. Phys. D:Appl. Phys. 48 455306
[24] Liao W, Bao H, Zhang X, Yang X, Zhang Z and Zhao H 2016 Appl. Phys. A 122 464
[25] Shyu F L 2017 Physica E 85 117
[26] Shyu F L 2017 Physica E 87 178
[27] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[28] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[29] Zou J, Jin G and Ma Y Q 2009 J. Phys.:Condens. Matter 21 126001
[30] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711
[31] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[32] Sasaki K I, Kato K, Tokura Y, Oguri K and Sogawa T 2011 Phys. Rev. B 84 085458
[33] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[34] Zhou B, Zhou B, Chen X, Liao W and Zhou G 2015 J. Phys.:Condens. Matter 27 465301
[35] Liao W, Zhou G and Xi F 2008 J. Appl. Phys. 104 126105
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[4] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[5] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[6] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[7] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[8] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[9] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[10] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[11] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[12] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[13] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[14] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[15] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
No Suggested Reading articles found!