Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017202    DOI: 10.1088/1674-1056/23/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Resonant tunneling through double-barrier structures on graphene

Deng Wei-Yin (邓伟胤)a, Zhu Rui (朱瑞)a, Xiao Yun-Chang (肖运昌)b, Deng Wen-Ji (邓文基)a
a Department of Physics, South China University of Technology, Guangzhou 510640, China;
b LQIT, ICMP and SPTE, South China Normal University, Guangzhou 510006, China
Abstract  Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight-binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schrödinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given.
Keywords:  graphene      tight-binding approximation      resonant tunneling  
Received:  05 July 2013      Revised:  06 August 2013      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.Ad (Ballistic transport)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004063) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012ZZ0076).
Corresponding Authors:  Deng Wen-Ji     E-mail:  phwjdeng@scut.edu.cn

Cite this article: 

Deng Wei-Yin (邓伟胤), Zhu Rui (朱瑞), Xiao Yun-Chang (肖运昌), Deng Wen-Ji (邓文基) Resonant tunneling through double-barrier structures on graphene 2014 Chin. Phys. B 23 017202

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[4] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[5] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[6] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[7] Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
[8] Brey L and Fertig H A 2006 Phys. Rev. B 73 195408
[9] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[10] Zhu R and Guo Y 2007 Appl. Phys. Lett. 91 252113
[11] DiCarlo L, Williams J R, Zhang Y M, McClure D T and Marcus C M 2008 Phys. Rev. Lett. 100 156801
[12] Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
[13] Zhu R and Lai M L 2011 J. Phys.: Condens. Matter 23 455302
[14] Prada E, San-Jose P and Schomerus H 2009 Phys. Rev. B 80 245414
[15] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[16] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[17] Cheng S G, Xing Y, Wang J and Sun Q F 2009 Phys. Rev. Lett. 103 167003
[18] Cheng S G, Zhang H and Sun Q F 2011 Phys. Rev. B 83 235403
[19] Schelter J, Trauzettel B and Recher P 2012 Phys. Rev. Lett. 108 106603
[20] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803
[21] Cayssol J, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428
[22] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[23] Wang X, Zhi L J and Müllen K 2008 Nano Lett. 8 323
[24] Benjamin C and Pachos J K 2008 Phys. Rev. B 78 235403
[25] Veldhorst M and Brinkman A 2010 Phys. Rev. Lett. 105 107002
[26] Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
[27] Pereira J M, Vasilopoulos Jr P and Peeters F M 2007 Appl. Phys. Lett. 90 132122
[28] Ramezani Masir M, Vasilopoulos P, Matulis A and Peeters F M 2008 Phys. Rev. B 77 235443
[29] Barbier M, Vasilopoulos P and Peeters F M 2009 Phys. Rev. B 80 205415
[30] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
[31] Guo X X, Liu D and Li Y X 2011 Appl. Phys. Lett. 98 242101
[32] Reich S, Maultzsch J and Thomsen C 2002 Phys. Rev. B 66 035412
[33] Deng W Y, Zhu R and Deng W J 2013 Acta Phys. Sin. 62 067301 (in Chinese)
[34] Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
[35] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414
[36] Landauer R 1957 IBM J. Res. Dev. 1 223
[37] Büttiker M 1993 J. Phys.: Condens. Matter 5 9361
[38] Christen T and Büttiker M 1996 Phys. Rev. Lett. 77 143
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!