CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations |
Yi-Man Liu(刘一曼)1, Huai-Hua Shao(邵怀华)2, Guang-Hui Zhou(周光辉)3, Hong-Guang Piao(朴红光)1, Li-Qing Pan(潘礼庆)1, Min Liu(刘敏)1 |
1. College of Science, China Three Gorges University, Yichang 443002, China;
2. School of Electrical Engineering, Liupanshui Normal University, Liupanshui 553004, China;
3. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China |
|
|
Abstract The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene. In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance (TMR) effect. The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.
|
Received: 23 July 2017
Revised: 04 September 2017
Accepted manuscript online:
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547249, 51501102, and 11647157) and the Science Foundation for Excellent Youth Doctors of Three Gorges University, China (Grant No. KJ2014B076). |
Corresponding Authors:
Min Liu
E-mail: lmin@ctgu.edu.cn
|
Cite this article:
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏) Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations 2017 Chin. Phys. B 26 127303
|
[1] |
Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[3] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[4] |
Vogt P, Padova P D, Quaresima C, Avila J and Frantzeskakis E 2012 Phys. Rev. Lett. 108 155501
|
[5] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[6] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[7] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[8] |
Ezawa M 2012 New J. Phys. 14 033003
|
[9] |
Yokoyama T 2013 Phys. Rev. B 87 241409
|
[10] |
Soodchomshom B 2014 J. Appl. Phys. 115 023706
|
[11] |
Wang R, Xu M S and Pi X D 2015 Chin. Phys. B 24 086807
|
[12] |
Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
|
[13] |
Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
|
[14] |
Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[15] |
Tahir M, Manchon A, Sabeeh K and Schwingenschlögl U 2013 Appl. Phys. Lett. 102 162412
|
[16] |
Kim Y, Choi K, and Ihm J 2014 Phys. Rev. B 89 085429
|
[17] |
Ezawa M 2013 Phys. Rev. Lett. 110 026603
|
[18] |
Kaloni T P, Singh N and Schwingenschló gl U 2014 Phys. Rev. B 89 035409
|
[19] |
Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
|
[20] |
Bahram S and Mohsen Y 2017 Chin. Phys. B 26 017203
|
[21] |
Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
|
[22] |
Tahir M and Schwingenschló gl U 2013 Sci. Rep. 3 1075
|
[23] |
Shakouri K, Vasilopoulos P, Vargiamidis V and Peeters F M 2014 Phys. Rev. B 90 125444
|
[24] |
Cerchez M, Hugger S and Heinzel T 2007 Phys. Rev. B 75 035341
|
[25] |
Hong J, Joo S, Kim T S, Rhie K, Kim K H, Kim S U, Lee B C and Shin K H 2007 Appl. Phys. Lett. 90 023510
|
[26] |
Matulis A and Peeters F M 1994 Phys. Rev. Lett. 72 1518
|
[27] |
Martino A D, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
|
[28] |
Dell'Anna L and Martino A D 2009 Phys. Rev. B 79 045420
|
[29] |
Zhai F and Chang K 2008 Phys. Rev. B 77 113409
|
[30] |
Wu Z, Peeters F M and Chang K 2011 Appl. Phys. Lett. 98 162101
|
[31] |
Liu Y, Zhou X, Shao H, Zhou M and Zhou G 2014 Physica B 445 81
|
[32] |
Wu X Q and Meng H 2015 J. Appl. Phys. 117 203903
|
[33] |
Zhang Q, Chan K S and Long M 2016 J. Phys.:Condens. Matter 28 055301
|
[34] |
Masir M R, Vasilopoulos P and Peeters F M 2010 J. Phys.:Condens. Matter 22 465302
|
[35] |
Wang H, Chen X, Zhou X, Zhang L and Zhou G 2012 Physica B 407 3664
|
[36] |
Moldovan D, Masir M R, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115431
|
[37] |
Xu H 1994 Phys. Rev. B 50 8469
|
[38] |
Xu H 1995 Phys. Rev. B 52 5803
|
[39] |
Ko D Y K and Inkson J C 1988 Phys. Rev. B 38 9945
|
[40] |
Zhou J, Cheng S, You W L and Jiang H 2016 Sci. Rep. 6 23211
|
[41] |
Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
|
[42] |
Zhang Y Y, Tsai W F, Chang K, An X T, Zhang G P, Xie X C and Li S S 2013 Phys. Rev. B 88 125431
|
[43] |
Bü ttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[44] |
Yang X D, Wang R Z, Guo Y, Yang W, Yu D B, Wang B and Yan H 2004 Phys. Rev. B 70 115303
|
[45] |
Saxena R, Saha A and Rao S 2015 Phys. Rev. B 92 245412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|