Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017204    DOI: 10.1088/1674-1056/28/1/017204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Generation of valley pump currents in silicene

John Tombe Jada Marcellino1, Mei-Juan Wang(王美娟)1, Sa-Ke Wang(汪萨克)1,2
1 Department of Physics, Southeast University, Nanjing 210096, China;
2 College of Science, Jinling Institute of Technology, Nanjing 211169, China
Abstract  

We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.

Keywords:  valley currents      charge pump      quantization      silicene  
Received:  02 September 2018      Revised:  21 November 2018      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274059, 11574045, and 11704165).

Corresponding Authors:  Sa-Ke Wang     E-mail:  IsaacWang@jit.edu.cn

Cite this article: 

John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克) Generation of valley pump currents in silicene 2019 Chin. Phys. B 28 017204

[1] Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[2] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[3] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[4] Meng L et al. 2013 Nano Lett. 13 685
[5] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and YamadaTakamura Y 2012 Phys. Rev. Lett. 108 245501
[6] De Padova P et al. 2010 Appl. Phys. Lett. 96 261905
[7] Núñez C, Domínguez-Adame F, Orellana P A, Rosales L and Römer R A 2016 2D Mater. 3 025006
[8] Zhang L 2018 Chin. Phys. B 27 067203
[9] Spencer M J and Morishita T 2016 Silicene: Structure, Properties and Applications (Cham: Springer International Publishing)
[10] Ezawa M and Le Lay G 2015 New J. Phys. 17 090201
[11] Chen X, Shi Z, Chen B and Song K 2017 Int. J. Mod. Phys. B 31 1750146
[12] Wang S and Yu J 2018 J. Supercond. Nov. Magn. 31 2789
[13] Wang S and Yu J 2018 Thin Solid Films 654 107
[14] Yang M, Song X L, Chen D H and Bai Y K 2015 Phys. Lett. A 379 1149
[15] Rowlands D A and Zhang Y Z 2014 Chin. Phys. B 23 037101
[16] Ren C, Zhou B, Sun M, Wang S, Li Y, Tian H and Lu W 2018 Appl. Phys. Express 11 063006
[17] Wang S, Ren C, Li Y, Tian H, Lu W and Sun M 2018 Appl. Phys. Express 11 053004
[18] Wang S K, Wang J and Chan K S 2014 New J. Phys. 16 045015
[19] Lin X and Ni J 2012 Phys. Rev. B 86 075440
[20] Wang S K and Wang J 2015 Chin. Phys. B 24 037202
[21] Sun M, Ren Q, Wang S, Yu J and Tang W 2016 J. Phys. D: Appl. Phys. 49 445305
[22] Tang W, Sun M, Ren Q, Zhang Y, Wang S and Yu J 2016 RSC Adv. 6 95846
[23] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[24] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[25] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[26] Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401
[27] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[28] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[29] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[30] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[31] Yokoyama T 2013 Phys. Rev. B 87 241409
[32] Zou J and Kang J 2018 Chin. Phys. B 27 037301
[33] Ezawa M 2013 Appl. Phys. Lett. 102 172103
[34] Yamakage A, Ezawa M, Tanaka Y and Nagaosa N 2013 Phys. Rev. B 88 085322
[35] Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
[36] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[37] Rycerz A, Tworzydło J and Beenakker C W J 2007 Nat. Phys. 3 172
[38] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[39] Ghaemi P, Cayssol J, Sheng D N and Vishwanath A 2012 Phys. Rev. Lett. 108 266801
[40] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[41] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[42] Beenakker C W J, Gnezdilov N V, Dresselhaus E, Ostroukh V P, Herasymenko Y, Adagideli · I and Tworzydło J 2018 Phys. Rev. B 97 241403
[43] Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z 2015 Adv. Mater. 27 5235
[44] Gamayun O V, Ostroukh V P, Gnezdilov N V, Adagideli · I and Beenakker C W J 2018 New J. Phys. 20 023016
[45] Yang M, Wang R Q and Bai Y K 2015 Phys. Lett. A 379 1732
[46] Ma N, Zhang S and Liu D 2016 Phys. Lett. A 380 1884
[47] Lundeberg M B and Folk J A 2014 Science 346 422
[48] Liu Y, Song J, Li Y, Liu Y and Sun Q F 2013 Phys. Rev. B 87 195445
[49] Song Y, Zhai F and Guo Y 2013 Appl. Phys. Lett. 103 183111
[50] Tian H and Wang J 2017 J. Phys.: Condens. Matter 29 385401
[51] Wang J J, Liu S, Wang J and Liu J F 2017 Sci. Rep. 7 10236
[52] Behnia K 2012 Nat. Nano. 7 488
[53] Gorbachev R V 2014 Science 346 448
[54] Zhang L and Wang J 2014 Chin. Phys. B 23 087202
[55] Wu Q P, Liu Z F, Chen A X, Xiao X B, Zhang H and Miao G X 2017 J. Phys.: Condens. Matter 29 395303
[56] Li C X, Wang S K and Wang J 2017 Chin. Phys. B 26 027304
[57] Tatsumi Y, Ghalamkari K and Saito R 2016 Phys. Rev. B 94 235408
[58] Ezawa M 2014 Phys. Rev. B 89 195413
[59] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[60] Wang Y 2013 J. Appl. Phys. 114 073709
[61] Yang M and Wang J 2014 New J. Phys. 16 113060
[62] Zhai F, Ma Y and Chang K 2011 New J. Phys. 13 083029
[63] Niu Z 2012 J. Appl. Phys. 111 103712
[64] Rozhkov A V, Rakhmanov A L, Sboychakov A O, Kugel K I and Nori F 2017 Phys. Rev. Lett. 119 107601
[65] Zhang Q, Chan K S and Li J 2018 Sci. Rep. 8 4343
[66] Xu L, Dai Z, Sui P, Sun Y and Wang W 2014 J. Vac. Sci. Technol. A 32 061507
[67] Grujić M M, Tadić M Ž and Peeters F M 2014 Phys. Rev. Lett. 113 046601
[68] Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
[69] Zhang Q, Lin Z and Chan K S 2012 J. Phys.: Condens. Matter 24 075302
[70] Liu J F and Chan K S 2011 Nanotechnology 22 395201
[71] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[72] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[73] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794
[74] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501
[75] Grujić M M, Tadić M Ž and Peeters F M 2015 Phys. Rev. B 91 245432
[76] Valenzuela S O and Tinkham M 2006 Nature 442 176
[77] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[78] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[79] Liu D P, Yu Z M and Liu Y L 2016 Phys. Rev. B 94 155112
[80] Tao L L, Cheung K T, Zhang L and Wang J 2017 Phys. Rev. B 95 121407
[81] Tian H, Wang S, Hu J and Wang J 2015 J. Phys.: Condens. Matter 27 125005
[82] Liang F, Gao B, Zhang J and Gu Y 2017 J. Semicond. 38 082002
[83] Marcellino J T J, Wang M J, Wang S K and Wang J 2018 Chin. Phys. B 27 057801
[84] Makhlin Yu and Mirlin A D 2001 Phys. Rev. Lett. 87 276803
[85] Zhou F, Spivak B and Altshuler B 1999 Phys. Rev. Lett. 82 608
[86] Brouwer P W 1998 Phys. Rev. B 58 R10135
[87] Switkes M, Marcus C M, Campman K and Gossard A C 1999 Science 283 1905
[88] Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
[89] Prada E, San-Jose P and Schomerus H 2009 Phys. Rev. B 80 245414
[90] Tiwari R P and Blaauboer M 2010 Appl. Phys. Lett. 97 243112
[91] Thouless D J 1983 Phys. Rev. B 27 6083
[92] Bhat A, Alsaleh S, Momeni D, Rehman A, Zaz Z, Faizal M, Jellal A and Alasfar L 2018 Eur. Phys. J. B 91 174
[93] Vaezi A, Abedpour N, Asgari R, Cortijo A and Vozmediano M A H 2013 Phys. Rev. B 88 125406
[94] Brouwer P W 1997 On the Random-Matrix Theory of Quantum Transport (Ph.D. Dissertation) (Ra Leiden: Rijksuniversiteit Leiden)
[95] Luo W, Sheng L, Wang B G and Xing D Y 2016 Sci. Rep. 6 31325
[96] Sasaki K I, Saito R, Dresselhaus M S, Wakabayashi K and Enoki T 2010 New J. Phys. 12 103015
[97] Ezawa M 2014 Phys. Lett. A 378 1180
[98] Wang J and Liu J F 2017 Phys. Rev. B 95 205433
[99] Büttiker M, Thomas H and Prêre A 1994 Z. Physik B Condensed Matter 94 133
[1] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[2] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[3] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[4] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[5] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[6] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[7] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[8] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[9] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[10] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[11] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[12] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[13] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[14] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[15] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
No Suggested Reading articles found!