CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes |
Zhang Min (张敏)a, Shi Jun-Jie (史俊杰)b |
a College of Physics and Electron Information, Inner Mongolia Normal University, Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, China;
b State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China |
|
|
Abstract The electronic structure and magnetic properties of the transition-metal (TM) atoms (Sc–Zn, Pt and Au) doped zigzag GaN single-walled nanotubes (NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Co-doped GaN NTs induce the largest local moment of 4μB among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it.
|
Received: 23 May 2013
Revised: 05 July 2013
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.75.+a
|
|
|
61.46.+w
|
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619304), the National Natural Science Foundation of China (Grant Nos. 51072007, 91021017, 11364030, and 11047018), and the Beijing Natural Science Foundation, China (Grant No. 1112007). |
Corresponding Authors:
Shi Jun-Jie
E-mail: jjshi@pku.edu.cn
|
Cite this article:
Zhang Min (张敏), Shi Jun-Jie (史俊杰) Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes 2014 Chin. Phys. B 23 017301
|
[1] |
Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G and Zettl A 1995 Science 269 966
|
[2] |
Zhao M, Xia Y, Zhang D and Mei L 2003 Phys. Rev. B 68 235415
|
[3] |
Szabó A and Gali A 2009 Phys. Rev. B 80 075425
|
[4] |
Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H J and Yang P 2003 Nature 422 599
|
[5] |
Li Z J, Chen X L, Li H J, Tu Q Y, Yang Z, Xu Y P and Hu B Q 2001 Appl. Phys. A 72 639
|
[6] |
Li S and Waag A 2012 J. Appl. Phys. 111 071101
|
[7] |
Gupta M K, Sinha N and Kumar B 2012 J. Appl. Phys. 112 014303
|
[8] |
Kuykendall T, Ulrich P, Aloni S and Yang P 2007 Nature Mater. 6 951
|
[9] |
Lee S M, Lee Y H, Hwang Y G, Elsner J, Porezag D and Frauenheim T 1999 Phys. Rev. B 60 7788
|
[10] |
Chen L 2006 Chin. Phys. 15 798
|
[11] |
Ismail-Beigi S 2008 Phys. Rev. B 77 035306
|
[12] |
Wang Q, Sun Q, Jena P and Kawazoe Y 2006 Phys. Rev. B 73 205320
|
[13] |
Hao S G, Zhou G, Wu J, Duan W H and Gu B L 2004 Phys. Rev. B 69 113403
|
[14] |
Guo Y H, Chen M X, Guo Z H and Yan X H 2008 Phys. Lett. A 372 2688
|
[15] |
Kitchen D, Richardella A, Tang J M, Flatté M E and Yazdani A 2006 Nature 442 436
|
[16] |
Dietl T, Ohno H, Matsukura F, Ciber J and Ferrand D 2000 Science 287 1019
|
[17] |
Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X and Shi E W 2008 Chin. Phys. B 17 1371
|
[18] |
Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L and Liu J T 2012 Chin. Phys. B 21 097103
|
[19] |
Xie X, Wang G Z, Shao Z B and Li D P 2009 J. Phys. Chem. C 113 14633
|
[20] |
Liu H X, Wu S Y, Singh R K, Gu L, Smith D J, Newman N, Dilley N R, Montes L and Simmonds M B 2004 Appl. Phys. Lett. 85 4076
|
[21] |
Yamaguchi K, Tomioka H, Yui T, Suemasu T, Ando K, Yoshizaki R and Hasegawa F 2005 Jpn. J. Appl. Phys. 44 6510
|
[22] |
Rosa A L and Ahuja R 2007 Appl. Phys. Lett. 91 232109
|
[23] |
Buchholz D B and Chang R P H 2005 Appl. Phys. Lett. 87 082504
|
[24] |
Huang L M, Rosa A L and Ahuja R 2006 Phys. Rev. B 74 075206
|
[25] |
Ye L, Freeman A J and Delley B 2006 Phys. Rev. B 73 033203
|
[26] |
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
|
[27] |
Pugh S K, Dugdale D J, Brand S and Abram R A 1999 Semicond. Sci. Technol. 14 23
|
[28] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[29] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[30] |
Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
|
[31] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[32] |
Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
|
[33] |
Alam K M and Ray A K 2007 Nanotechnology 18 495706
|
[34] |
Guo Y, Yan X and Yang Y 2009 Phys. Lett. A 373 367
|
[35] |
Santos E J G, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 10 053012
|
[36] |
Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|