Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047304    DOI: 10.1088/1674-1056/26/4/047304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum transport through a Z-shaped silicene nanoribbon

A Ahmadi Fouladi
Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran
Abstract  In this work, the electronic transport properties of Z-shaped silicene nanoribbon (ZsSiNR) structure are investigated. The calculations are based on the tight-binding model and Green's function method in Landauer-Büttiker formalism, in which the electronic density of states (DOS), transmission probability, and current-voltage characteristics of the system are calculated, numerically. It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system. It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction (SOI) strength. Also, the semiconductor to metallic transition occurs by increasing the SOI strength. The present theoretical results may be useful to design silicene-based devices in nanoelectronics.
Keywords:  Z-shaped silicene nanoribbon      electronic transport      Green's function method      spin-orbit interaction  
Received:  18 November 2016      Revised:  16 January 2017      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the Sari Branch, Islamic Azad University, Iran Grant No. 1-24850.
Corresponding Authors:  A Ahmadi Fouladi     E-mail:  a.ahmadifouladi@iausari.ac.ir

Cite this article: 

A Ahmadi Fouladi Quantum transport through a Z-shaped silicene nanoribbon 2017 Chin. Phys. B 26 047304

[1] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 15 155501
[2] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[3] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[4] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[5] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nano 10 227
[6] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[7] Ezawa M 2012 New J. Phys. 14 033003
[8] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[9] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[10] Chen Y P, Xie Y E and Zhong J 2008 Phys. Lett. A 372 5928
[11] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
[12] Chen Y P, Xie Y E, Sun L Z and Zhong J 2008 Appl. Phys. Lett. 93 092104
[13] Zhang Z Z, Wu Z H, Chang K and Peeters F M 2009 Nanotechnology 20 415203
[14] Li H, Liu N, Zheng Y, Wang F and Hao H 2010 Physica B: Conden. Matter 405 3316
[15] Xu J G, Wang L and Weng M Q 2013 J. Appl. Phys. 114 153701
[16] Tong H and Wu M W 2012 Phys. Rev. B 85(20) 205433
[17] Ahmadi Fouladi A and Ketabi S 2015 Physica E: Low-dimensional Systems and Nanostructures 74 475
[18] Ahmadi Fouladi A 2016 Superlattices and Microstructures 95 108-114
[19] Zhou B, Zhou B, Zeng Y, Zhou G and Duan M 2016 Phys. Lett. A 380 1469
[20] Zhou B, Zhou B, Zeng Y, Zhou G and Duan M 2016 Phys. Lett. A 380 282
[21] Wang X S, Shen M, An X T and Liu J J 2016 Phys. Lett. A 380 1663
[22] Trivedi S, Srivastava A and Kurchania R 2014 J. Comput. Theor. Nanosci. 11 789
[23] Shakouri Kh, Simchi H, Esmaeilzadeh M, Mazidabadi H, and Peeters F M 2015 Phys. Rev. B 92 035413
[24] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[25] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[26] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[27] Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[7] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[10] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[11] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[12] Spin flip in single quantum ring with Rashba spin-orbit interation
Duan-Yang Liu(刘端阳), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(3): 037201.
[13] Three-dimensional modulations on the states of polarization of light fields
Peng Li(李鹏), Dongjing Wu(吴东京), Sheng Liu(刘圣), Yi Zhang(章毅), Xuyue Guo(郭旭岳), Shuxia Qi(齐淑霞), Yu Li(李渝), Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114201.
[14] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[15] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
No Suggested Reading articles found!