Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067203    DOI: 10.1088/1674-1056/27/6/067203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction

Lin Zhang(张林)1,2
1 Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China;
2 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  We propose two possible spin valves based on a zigzag silicene nanoribbon (ZSR) ferromagnetic junction. By using the Landauer-Bütikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin-orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene.
Keywords:  zigzag silicene nanoribbon      spin valve      spin-orbit coupling      conductance  
Received:  25 February 2018      Revised:  25 March 2018      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  72.25.Mk (Spin transport through interfaces)  
  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11547127),the China Postdoctoral Science Foundation (Grant No.2017M611852),and the Natural Science Foundation for Colleges and Universities in Jiangsu Province,China (Grant No.13KJB140005).
Corresponding Authors:  Lin Zhang     E-mail:  lzhang2010@163.com

Cite this article: 

Lin Zhang(张林) Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction 2018 Chin. Phys. B 27 067203

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[4] Moldovan D, Masir M R, Covaci L, Peeters F M 2012 Phys. Rev. B 86 115431
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[6] Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Guntherodt G, Beschotem B and Ozyilmaz B 2011 Phys. Rev. Lett. 107 047206
[7] Hwang E H, Adam S and Das Sarma S 2007 Phys. Rev. Lett. 98 186806
[8] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[9] Raes B, Scheerder J E, Costache M V, Bonell F, Sierra J F, Cuppens J, Van de Vondel J and Valenzuela S O 2016 Nat. Commun. 7 11444
[10] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[11] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[12] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
[13] Niu Z P and Xing D Y 2010 Eur. Phys. J. B 73 139
[14] Chen J, Cheng S, Shen S Q and Sun Q 2010 J. Phys.:Condens. Matter 22 035301
[15] Wang J, Tian H Y, Yang Y H and Chan K S 2012 Phys. Rev. B 86 081404
[16] Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
[17] Zhang L 2017 J. Phys.:Condens. Matter 29 055304
[18] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[19] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[20] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[21] Zhou B, Zhou B, Chen X W, Liao W and Zhou G 2015 J. Phys.:Condens. Matter 27 465301
[22] Zhai X and Jin G J 2016 J. Phys.:Condens. Matter 28 355002
[23] Shen M, Zhang Y Y, An X T, Liu J J and Li S S 2014 J. Appl. Phys. 115 233702
[24] Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Yang C H 2014 Rsc Adv. 4 58941
[25] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[26] Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
[27] Drummond N D, Zolyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[28] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[29] Ezawa M 2012 New J. Phys. 14 033003
[30] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 213115
[31] Wang S K, Wang J and Chan K S 2014 New J. Phys. 16 045015
[32] Farokhnezhad M, Esmaeilzadeh M, Ahmadi S and Pourmaghavi N 2015 J. Appl. Phys. 117 173913
[33] Rashidian Z, Hajati H, Rezaeipour S and Baher S 2017 Physica E 86 111
[34] Chowdhury S and Jana D 2016 Rep. Prog. Phys. 79 126501
[35] Majumdar A, Chowdhury S, Nath P and Jana D 2014 Rsc Adv. 4 32221
[36] Das R, Chowdhury S, Majumdar A and Jana D 2015 Rsc Adv. 5 41
[37] Chuang F C, Hsu C H, Chou H L, Crisostomo C P, Huang Z Q, Wu S Y, Kuo C C, Yeh W C V, Lin H and Bansil A 2016 Phys. Rev. B 93 035429
[38] Entin-Wohlman O, Aharony A and Levinson Y 2002 Phys. Rev. B 65 195411
[39] Datta S 1995 Electronic Transport in Mesoscopic systems, 2nd edn. (England:Cambridge University Press) pp. 102-103
[40] Lee M H 2000 Phys. Rev. Lett. 85 2422
[41] Datta S 2000 Superlattices Microstruct. 28 253
[42] Pecchia A, Penazzi G, Salvucci L and Di Carlo A 2008 New J. Phys. 10 065022
[43] Haug H and Jauho A P 1999 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin:Springer) pp. 162-163
[44] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[45] Thorgilsson G, Viktorsson G and Erlingsson S I 2014 J. Comput. Phys. 261 256
[46] Rotter S, Tang J Z, Wirtz L, Trost J and Burgdorfer J 2000 Phys. Rev. B 62 1950
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!