CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction |
Lin Zhang(张林)1,2 |
1 Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China; 2 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract We propose two possible spin valves based on a zigzag silicene nanoribbon (ZSR) ferromagnetic junction. By using the Landauer-Bütikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin-orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene.
|
Received: 25 February 2018
Revised: 25 March 2018
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11547127),the China Postdoctoral Science Foundation (Grant No.2017M611852),and the Natural Science Foundation for Colleges and Universities in Jiangsu Province,China (Grant No.13KJB140005). |
Corresponding Authors:
Lin Zhang
E-mail: lzhang2010@163.com
|
Cite this article:
Lin Zhang(张林) Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction 2018 Chin. Phys. B 27 067203
|
[1] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[2] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[3] |
Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
|
[4] |
Moldovan D, Masir M R, Covaci L, Peeters F M 2012 Phys. Rev. B 86 115431
|
[5] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[6] |
Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Guntherodt G, Beschotem B and Ozyilmaz B 2011 Phys. Rev. Lett. 107 047206
|
[7] |
Hwang E H, Adam S and Das Sarma S 2007 Phys. Rev. Lett. 98 186806
|
[8] |
Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
|
[9] |
Raes B, Scheerder J E, Costache M V, Bonell F, Sierra J F, Cuppens J, Van de Vondel J and Valenzuela S O 2016 Nat. Commun. 7 11444
|
[10] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[11] |
Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
|
[12] |
Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
|
[13] |
Niu Z P and Xing D Y 2010 Eur. Phys. J. B 73 139
|
[14] |
Chen J, Cheng S, Shen S Q and Sun Q 2010 J. Phys.:Condens. Matter 22 035301
|
[15] |
Wang J, Tian H Y, Yang Y H and Chan K S 2012 Phys. Rev. B 86 081404
|
[16] |
Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
|
[17] |
Zhang L 2017 J. Phys.:Condens. Matter 29 055304
|
[18] |
Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
|
[19] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[20] |
Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
|
[21] |
Zhou B, Zhou B, Chen X W, Liao W and Zhou G 2015 J. Phys.:Condens. Matter 27 465301
|
[22] |
Zhai X and Jin G J 2016 J. Phys.:Condens. Matter 28 355002
|
[23] |
Shen M, Zhang Y Y, An X T, Liu J J and Li S S 2014 J. Appl. Phys. 115 233702
|
[24] |
Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Yang C H 2014 Rsc Adv. 4 58941
|
[25] |
Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
|
[26] |
Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
|
[27] |
Drummond N D, Zolyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[28] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
|
[29] |
Ezawa M 2012 New J. Phys. 14 033003
|
[30] |
An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 213115
|
[31] |
Wang S K, Wang J and Chan K S 2014 New J. Phys. 16 045015
|
[32] |
Farokhnezhad M, Esmaeilzadeh M, Ahmadi S and Pourmaghavi N 2015 J. Appl. Phys. 117 173913
|
[33] |
Rashidian Z, Hajati H, Rezaeipour S and Baher S 2017 Physica E 86 111
|
[34] |
Chowdhury S and Jana D 2016 Rep. Prog. Phys. 79 126501
|
[35] |
Majumdar A, Chowdhury S, Nath P and Jana D 2014 Rsc Adv. 4 32221
|
[36] |
Das R, Chowdhury S, Majumdar A and Jana D 2015 Rsc Adv. 5 41
|
[37] |
Chuang F C, Hsu C H, Chou H L, Crisostomo C P, Huang Z Q, Wu S Y, Kuo C C, Yeh W C V, Lin H and Bansil A 2016 Phys. Rev. B 93 035429
|
[38] |
Entin-Wohlman O, Aharony A and Levinson Y 2002 Phys. Rev. B 65 195411
|
[39] |
Datta S 1995 Electronic Transport in Mesoscopic systems, 2nd edn. (England:Cambridge University Press) pp. 102-103
|
[40] |
Lee M H 2000 Phys. Rev. Lett. 85 2422
|
[41] |
Datta S 2000 Superlattices Microstruct. 28 253
|
[42] |
Pecchia A, Penazzi G, Salvucci L and Di Carlo A 2008 New J. Phys. 10 065022
|
[43] |
Haug H and Jauho A P 1999 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin:Springer) pp. 162-163
|
[44] |
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
|
[45] |
Thorgilsson G, Viktorsson G and Erlingsson S I 2014 J. Comput. Phys. 261 256
|
[46] |
Rotter S, Tang J Z, Wirtz L, Trost J and Burgdorfer J 2000 Phys. Rev. B 62 1950
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|