Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017203    DOI: 10.1088/1674-1056/23/1/017203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin and valley half metal induced by staggered potential and magnetization in silicene

Wang Sa-Ke (汪萨克), Tian Hong-Yu (田宏玉), Yang Yong-Hong (杨永宏), Wang Jun (汪军)
Department of Physics, Southeast University, Nanjing 210096, China
Abstract  We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is shown that the silicene could be a spin and valley half metal under appropriate parameters when the spin–orbit interaction is considered; further, the filtered spin and valley could be controlled by modulating the staggered potential or magnetization. It is also found that in the spin-valve structure of silicene, not only can the antiparallel magnetization configuration significantly reduce the valve-structure conductance, but the reversing staggered electric potential can cause a high-performance magnetoresistance due to the spin and valley blocking effects. Our findings show that the silicene might be an ideal basis for the spin and valley filter analyzer devices.
Keywords:  silicene      spin–orbit interaction      spin and valley half metal      spin and valley blocking effect  
Received:  08 May 2013      Revised:  05 August 2013      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074032, 11074233, and 11274079) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).
Corresponding Authors:  Wang Jun     E-mail:  jwang@seu.edu.cn

Cite this article: 

Wang Sa-Ke (汪萨克), Tian Hong-Yu (田宏玉), Yang Yong-Hong (杨永宏), Wang Jun (汪军) Spin and valley half metal induced by staggered potential and magnetization in silicene 2014 Chin. Phys. B 23 017203

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[4] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[8] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[9] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[10] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[11] Ezawa M 2012 New J. Phys. 14 033003
[12] Ezawa M 2012 J. Phys. Soc. Jpn. 81 064705
[13] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[14] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[15] Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
[16] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[17] Mak K, He K, Shan J and Heinz T 2012 Nat. Nanotechnol. 7 494
[18] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[19] Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L and Urbaszek B 2012 Phys. Rev. B 86 081301
[20] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[21] Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G 2010 Appl. Phys. Lett. 96 261905
[22] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[23] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[24] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[25] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara T, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nature Mater. 9 894
[26] Tian H Y, Yang Y H, Chan K S and Wang J 2012 Phys. Rev. B 86 245413
[27] Wang J and Liu S 2012 Phys. Rev. B 85 035402
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[6] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[7] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[8] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[9] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[10] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[11] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[12] The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发). Chin. Phys. B, 2018, 27(12): 127401.
[13] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[14] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[15] Spin-valley Hall conductivity of doped ferromagnetic silicene under strain
Bahram Shirzadi, Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(1): 017203.
No Suggested Reading articles found!