Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026801    DOI: 10.1088/1674-1056/27/2/026801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study

Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏)
School of Physical Science and Technology, China University of Mining and Technology(CUMT), Xuzhou 221116, China
Abstract  Silicene, a silicon analogue of graphene, has attracted increasing research attention in recent years because of its unique electrical and thermal conductivities. In this study, phonon thermal conductivity and its isotopic doping effect in silicene nanoribbons (SNRs) are investigated by using molecular dynamics simulations. The calculated thermal conductivities are approximately 32 W/mK and 35 W/mK for armchair-edged SNRs and zigzag-edged SNRs, respectively, which show anisotropic behaviors. Isotope doping induces mass disorder in the lattice, which results in increased phonon scattering, thus reducing the thermal conductivity. The phonon thermal conductivity of isotopic doped SNR is dependent on the concentration and arrangement pattern of dopants. A maximum reduction of about 15% is obtained at 50% randomly isotopic doping with 30Si. In addition, ordered doping (i.e., isotope superlattice) leads to a much larger reduction in thermal conductivity than random doping for the same doping concentration. Particularly, the periodicity of the doping superlattice structure has a significant influence on the thermal conductivity of SNR. Phonon spectrum analysis is also used to qualitatively explain the mechanism of thermal conductivity change induced by isotopic doping. This study highlights the importance of isotopic doping in tuning the thermal properties of silicene, thus guiding defect engineering of the thermal properties of two-dimensional silicon materials.
Keywords:  silicene      phonon thermal conductivity      isotope doping      molecular dynamics simulations  
Received:  29 July 2017      Revised:  18 October 2017      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504418 and 11447033), the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 16KJB460022), and the Fundamental Research Funds for the Central Universities of CUMT, China (Grant No. 2015XKMS075).
Corresponding Authors:  Kui Han     E-mail:  han6409@263.net
About author:  68.65.-k; 44.10.+i; 65.80.-g; 66.70.-f

Cite this article: 

Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏) Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study 2018 Chin. Phys. B 27 026801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[3] Shirzadi B and Yarmohammadi M 2017 Chin. Phys. B 26 017203
[4] Chowdhury S and Jana D 2016 Rep. Prog. Phys. 79 126501
[5] Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, and Lu J 2012 Nano Lett. 12 113
[6] Sadeddine S, Enriquez H, Bendounan A, Kumar Das P, Vobornik I, Kara A, Mayne A J, Sirotti F, Dujardin G and Oughaddou H 2017 Sci. Rep. 7 44400
[7] Meng L, Wang Y L, Zhang L Z, Du S X and Gao H J 2015 Chin. Phys. B 24 086803
[8] Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[9] Wu K H 2015 Chin. Phys. B 24 086802
[10] Pulci O, Gori P, Marsili M, Garbuio V, Del Sole R and Bechstedt F 2012 Europhys. Lett. 98 37004
[11] Li H P and Zhang R Q 2012 Europhys. Lett. 99 36001
[12] Hu M, Zhang X L and Poulikakos D 2013 Phys. Rev. B 87 195417
[13] Ng T Y, Yeo J J and Liu Z S 2013 Int. J. Mech. Mater. Des. 9 105
[14] Lew Yan Voon L C 2015 Chin. Phys. B 24 087309
[15] Drummond N D, Zolyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[16] Wang Z Y, Feng T L and Ruan X L 2015 J. Appl. Phys. 117 084317
[17] Zhang X L, Bao H and Hu M 2015 Nanoscale 7 6014
[18] Liu Z Y, Wu X F and Luo T F 2017 2D Mater. 4 025002
[19] Zhao W, Guo Z X, Zhang Y, Ding J W and Zheng X J 2016 Solid State Commun. 227 1
[20] Wirth L J, Osborn T H and Farajian A A 2016 Appl. Phys. Lett. 109 173102
[21] Kuang Y D, Lindsay L, Shi S Q and Zheng G P 2016 Nanoscale 8 3760
[22] Araujo P T, Terrones M, and Dresselhaus M S 2012 Materials Today 15 98
[23] Yang N, Zhang G and Li B 2008 Nano Lett. 8 276
[24] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H Z, Wang D Z, Opeil C, Dresselhaus M, Chen G and Ren Z F 2010 Nano Lett. 12 2077
[25] Sevincli H, Sevik C, Cagin T and Cuniberti G 2013 Sci. Rep. 3 1228
[26] Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
[27] Guo Y, Zhou S, Bai Y and Zhao J 2015 J. Supercond. Nov. Magn. 29 717
[28] Liu B, Reddy C D, Jiang J W, Zhu H W, Baimova J A, Dmitriev S V and Zhou K 2014 J. Phys. D:Appl. Phys. 47 165301
[29] Zhang G and Zhang Y W 2013 Phys. Status Solidi 7 754
[30] Muller-Plathe F 1997 J. Chem. Phys. 106 6082
[31] Plimpton S 1995 J. Comput. Phys. 117 1
[32] Cao B Y and Li Y W 2010 J. Chem. Phys. 133 024106
[33] Tersoff J 1989 Phys. Rev. B 39 5566
[34] Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
[35] Nose S 1984 Mol. Phys. 52 255
[36] Srinivasan S, Ray U and Balasubramanian G 2016 Chem. Phys. Lett. 650 88
[37] Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752
[38] Regner K T, Sellan D P, Su Z H, Amon C H, McGaughey A J H and Malen J A 2013 Nat. Commun. 4 1640
[39] Ye Z Q, Cao B Y, Yao W J, Feng T L and Ruan X L 2015 Carbon 93 915
[40] Aksamija Z and Knezevic I 2011 Appl. Phys. Lett. 98 141919
[41] Hu J, Schiffli S, Vallabhaneni A, Ruan X and Chen Y P 2010 Appl. Phys. Lett. 97 133107
[42] Pei Q X, Zhang Y W, Sha Z D and Shenoy V B 2013 J. Appl. Phys. 114 033526
[43] Balasubramanian G, Puri I K, Bohm M C and Leroy F 2011 Nanoscale 3 3714
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[5] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[6] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[7] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[8] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[9] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[10] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[11] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[12] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[13] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[14] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[15] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
No Suggested Reading articles found!