SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University |
Prev
Next
|
|
|
The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure |
Fenghua Qi(戚凤华)1,2, Jun Cao(曹军)1,2, Jie Cao(曹杰)3, Lifa Zhang(张力发)1 |
1 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;
3 College of Science, Hohai University, Nanjing 210098, China |
|
|
Abstract We theoretically investigate the influence of off-resonant circularly polarized light field and perpendicular electric field on the quantum transport in a monolayer silicene-based normal/superconducting/normal junction. Owing to the tunable band structure of silicene, a pure crossed Andreev reflection process can be realized under the optical and electrical coaction. Moreover, a switch effect among the exclusive crossed Andreev reflection, the exclusive elastic cotunneling and the exclusive Andreev reflection, where the former two are the nonlocal transports and the third one is the local transport, can be obtained in our system by the modulation of the electric and light fields. In addition, the influence of the relevant parameters on the nonlocal and local transports is calculated and analyzed as well.
|
Received: 22 August 2018
Revised: 02 November 2018
Accepted manuscript online:
|
PACS:
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504084 and 11647164) and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant Nos. 18KJB140005, 17KJD170004, and 16KJB140008). |
Corresponding Authors:
Lifa Zhang
E-mail: phyzlf@njnu.edu.cn
|
Cite this article:
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发) The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure 2018 Chin. Phys. B 27 127401
|
[1] |
Oughaddou H, Enriquez H, Tchalala M R, Yildirim H, Mayne A J, Bendounan A, Dujardin G, Ait Ali M and Kara A 2015 Prog. Surf. Sci. 90 46
|
[2] |
Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Li C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24
|
[3] |
Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
|
[4] |
Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[5] |
Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[6] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[7] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[8] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[9] |
Ezawa M 2013 Phys. Rev. Lett. 110 026603
|
[10] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[11] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[12] |
Johnson N, Vogt P, Resta A, Padova P D, Pere I, Muir D, Kurmaev E Z, Lay G L and Moewes A 2014 Adv. Funct. Mater. 24 5253
|
[13] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[14] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[15] |
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
|
[16] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
|
[17] |
Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504
|
[18] |
Li H 2016 Phys. Rev. B 94 075428
|
[19] |
Li H, Wang R and Ting C S 2016 Phys. Rev. B 94 085422
|
[20] |
Zhou X and Jin G 2016 Phys. Rev. B 94 165436
|
[21] |
Paul G C and Saha A 2017 Phys. Rev. B 95 045420
|
[22] |
Vosoughinia S, Hajati Y and Rashedi G 2017 J. Appl. Phys. 122 043906
|
[23] |
Soodchomshom B, Niyomsoot K and Pattrawutthiwong E 2018 Physica E 97 375
|
[24] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[25] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[26] |
Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
|
[27] |
Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
|
[28] |
Recher P, Sukhorukov E V and Loss D 2001 Phys. Rev. B 63 165314
|
[29] |
Chtchelkatchev N M, Blatter G, Lesovik G B and Martin T 2002 Phys. Rev. B 66 161320
|
[30] |
Byers J M and Flatté M E 1995 Phys. Rev. Lett. 74 306
|
[31] |
Deutscher G and Feinberg D 2000 Appl. Phys. Lett. 76 487
|
[32] |
Buzdin A I 2005 Rev. Mod. Phys. 77 935
|
[33] |
Hofstetter L, Csonka S, Nygård J and Schönenberger C 2009 Nature 461 960
|
[34] |
Schindele J, Baumgartne A and Schönenberger C 2012 Phys. Rev. Lett. 109 157002
|
[35] |
Schroer A, Silvestrov P G and Recher P 2015 Phys. Rev. B 92 241404(R)
|
[36] |
Mélin R and Feinberg D 2004 Phys. Rev. B 70 174509
|
[37] |
Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104 026801
|
[38] |
Wei J and Chandrasekhar V 2010 Nat. Phys. 6 494
|
[39] |
Cayssol J 2008 Phys. Rev. Lett. 100 147001
|
[40] |
Veldhorst M and Brinkman A 2010 Phys. Rev. Lett. 105 107002
|
[41] |
Linder J, Zareyan M and Sudbo A 2009 Phys. Rev. B 80 014513
|
[42] |
Majidi L and Asgari R 2014 Phys. Rev. B 90 165440
|
[43] |
Chen W, Shen R, Sheng L, Wang B G and Xing D Y 2011 Phys. Rev. B 84 115420
|
[44] |
Reinthaler R W, Recher P and Hankiewicz E M 2013 Phys. Rev. Lett. 110 226802
|
[45] |
Zhang Y T, Hou Z, Xie X C and Sun Q F 2017 Phys. Rev. B 95 245433
|
[46] |
Qi F, Cao J and Jin G 2018 Phys. Rev. B 98 045422
|
[47] |
Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
|
[48] |
Zhou X, Xu Y and Jin G 2015 Phys. Rev. B 92 235436
|
[49] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[50] |
Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997
|
[51] |
López Sancho M P, López Sancho J M and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|