Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127401    DOI: 10.1088/1674-1056/27/12/127401
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure

Fenghua Qi(戚凤华)1,2, Jun Cao(曹军)1,2, Jie Cao(曹杰)3, Lifa Zhang(张力发)1
1 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;
3 College of Science, Hohai University, Nanjing 210098, China
Abstract  

We theoretically investigate the influence of off-resonant circularly polarized light field and perpendicular electric field on the quantum transport in a monolayer silicene-based normal/superconducting/normal junction. Owing to the tunable band structure of silicene, a pure crossed Andreev reflection process can be realized under the optical and electrical coaction. Moreover, a switch effect among the exclusive crossed Andreev reflection, the exclusive elastic cotunneling and the exclusive Andreev reflection, where the former two are the nonlocal transports and the third one is the local transport, can be obtained in our system by the modulation of the electric and light fields. In addition, the influence of the relevant parameters on the nonlocal and local transports is calculated and analyzed as well.

Keywords:  switch effect      silicene      crossed Andreev reflection  
Received:  22 August 2018      Revised:  02 November 2018      Accepted manuscript online: 
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.Ad (Ballistic transport)  
  85.25.-j (Superconducting devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504084 and 11647164) and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant Nos. 18KJB140005, 17KJD170004, and 16KJB140008).

Corresponding Authors:  Lifa Zhang     E-mail:  phyzlf@njnu.edu.cn

Cite this article: 

Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发) The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure 2018 Chin. Phys. B 27 127401

[1] Oughaddou H, Enriquez H, Tchalala M R, Yildirim H, Mayne A J, Bendounan A, Dujardin G, Ait Ali M and Kara A 2015 Prog. Surf. Sci. 90 46
[2] Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Li C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24
[3] Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[4] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[5] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[6] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[7] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[8] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[9] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[10] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[11] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[12] Johnson N, Vogt P, Resta A, Padova P D, Pere I, Muir D, Kurmaev E Z, Lay G L and Moewes A 2014 Adv. Funct. Mater. 24 5253
[13] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[14] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[15] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[16] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[17] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504
[18] Li H 2016 Phys. Rev. B 94 075428
[19] Li H, Wang R and Ting C S 2016 Phys. Rev. B 94 085422
[20] Zhou X and Jin G 2016 Phys. Rev. B 94 165436
[21] Paul G C and Saha A 2017 Phys. Rev. B 95 045420
[22] Vosoughinia S, Hajati Y and Rashedi G 2017 J. Appl. Phys. 122 043906
[23] Soodchomshom B, Niyomsoot K and Pattrawutthiwong E 2018 Physica E 97 375
[24] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[25] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[26] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[27] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
[28] Recher P, Sukhorukov E V and Loss D 2001 Phys. Rev. B 63 165314
[29] Chtchelkatchev N M, Blatter G, Lesovik G B and Martin T 2002 Phys. Rev. B 66 161320
[30] Byers J M and Flatté M E 1995 Phys. Rev. Lett. 74 306
[31] Deutscher G and Feinberg D 2000 Appl. Phys. Lett. 76 487
[32] Buzdin A I 2005 Rev. Mod. Phys. 77 935
[33] Hofstetter L, Csonka S, Nygård J and Schönenberger C 2009 Nature 461 960
[34] Schindele J, Baumgartne A and Schönenberger C 2012 Phys. Rev. Lett. 109 157002
[35] Schroer A, Silvestrov P G and Recher P 2015 Phys. Rev. B 92 241404(R)
[36] Mélin R and Feinberg D 2004 Phys. Rev. B 70 174509
[37] Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104 026801
[38] Wei J and Chandrasekhar V 2010 Nat. Phys. 6 494
[39] Cayssol J 2008 Phys. Rev. Lett. 100 147001
[40] Veldhorst M and Brinkman A 2010 Phys. Rev. Lett. 105 107002
[41] Linder J, Zareyan M and Sudbo A 2009 Phys. Rev. B 80 014513
[42] Majidi L and Asgari R 2014 Phys. Rev. B 90 165440
[43] Chen W, Shen R, Sheng L, Wang B G and Xing D Y 2011 Phys. Rev. B 84 115420
[44] Reinthaler R W, Recher P and Hankiewicz E M 2013 Phys. Rev. Lett. 110 226802
[45] Zhang Y T, Hou Z, Xie X C and Sun Q F 2017 Phys. Rev. B 95 245433
[46] Qi F, Cao J and Jin G 2018 Phys. Rev. B 98 045422
[47] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[48] Zhou X, Xu Y and Jin G 2015 Phys. Rev. B 92 235436
[49] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[50] Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997
[51] López Sancho M P, López Sancho J M and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[6] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[7] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[8] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[9] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[10] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[11] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[12] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[13] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[14] Spin-valley Hall conductivity of doped ferromagnetic silicene under strain
Bahram Shirzadi, Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(1): 017203.
[15] Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations
Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(6): 067103.
No Suggested Reading articles found!