CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic properties of silicene in BN/silicene van der Waals heterostructures |
Ze-Bin Wu(吴泽宾)1,2, Yu-Yang Zhang(张余洋)1,2, Geng Li(李更)1,2, Shixuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2 |
1 Key Laboratory of Vacuum Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculate the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
|
Received: 13 April 2018
Revised: 23 April 2018
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Corresponding Authors:
Shixuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Electronic properties of silicene in BN/silicene van der Waals heterostructures 2018 Chin. Phys. B 27 077302
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[3] |
Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
|
[4] |
Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
|
[5] |
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M and Robinson J A 2015 ACS Nano 9 11509
|
[6] |
Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
|
[7] |
Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22
|
[8] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[9] |
Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
|
[10] |
Du X, Skachko I, Duerr F, Luican A and and Andrei E Y 2009 Nature 462 192
|
[11] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
|
[12] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[13] |
Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[14] |
Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
|
[15] |
Li H, Hui F and and Meng S 2015 Chin. Phys. B 24 086102
|
[16] |
Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
|
[17] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[18] |
Scalise E, Houssa M, Cinquanta E, Grazianetti C, Broek B v d, Pourtois G, Stesmans A, Fanciulli M and Molle A 2014 2D Materials 1 011010
|
[19] |
Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
|
[20] |
Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X and Dou S X 2014 ACS Nano 8 10019
|
[21] |
Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
|
[22] |
Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[23] |
Chun-Liang L, Ryuichi A, Kazuaki K, Noriyuki T, Emi M, Yousoo K, Noriaki T and Maki K 2012 Appl. Phys. Express 5 045802
|
[24] |
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
|
[25] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[26] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[27] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[28] |
Meng L, Wang Y L, Zhang L Z, Du S X and Gao H J 2015 Chin. Phys. B 24 086803
|
[29] |
Huang L, Zhang Y F, Zhang Y Y, Xu W, Que Y, Li E, Pan J B, Wang Y L, Liu Y, Du S X, Pantelides S T and Gao H J 2017 Nano Lett. 17 1161
|
[30] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[31] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M and Molle Aand Akinwande D 2015 Nat. Nano. 10 227
|
[32] |
Guo Z X, Furuya S, Iwata J and Oshiyama A 2013 Phys. Rev. B 87 235435
|
[33] |
Wang Y P and Cheng H P 2013 Phys. Rev. B 87 245430
|
[34] |
Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
|
[35] |
Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
|
[36] |
Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
|
[37] |
Zhong H X, Quhe R G, Wang Y Y, Shi J J and Lü J 2015 Chin. Phys. B 24 087308
|
[38] |
Neek-Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
|
[39] |
Wang M, Liu L, Liu C C and Yao Y 2016 Phys. Rev. B 93 155412
|
[40] |
Kou L, Ma Y, Yan B, Tan X, Chen C and Smith S C 2015 ACS Appl. Mater. Interfaces 7 19226
|
[41] |
Smeu M, Zahid F, Ji W, Guo H, Jaidann M and Abou-Rachid H 2011 J. Phys. Chem. C 115 10985
|
[42] |
Kresse G and Furthmüller J 1996 Comp. Mat. Sci. 6 15
|
[43] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[44] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[45] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[46] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[47] |
Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
|
[48] |
Kaloni T P, Tahir M and Schwingenschlögl U 2013 Sci. Rep. 3 3192
|
[49] |
Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M and Wang X 2015 Nat. Commun. 6 7698
|
[50] |
Ba K, Jiang W, Cheng J, Bao J, Xuan N, Sun Y, Liu B, Xie A, Wu S and Sun Z 2017 Sci. Rep. 7 45584
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|