Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057201    DOI: 10.1088/1674-1056/abcf35
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions

Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君)
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper, quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.
Keywords:  valley polarization      spin-orbit coupling      quantization      silicene  
Received:  07 July 2020      Revised:  12 November 2020      Accepted manuscript online:  01 December 2020
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.22.Pr (Electronic structure of graphene)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ17A040001), the National Natural Science Foundation of China (Grant Nos. 61874078, 11647046, and 61904125), the National Key Research and Development Program of China (Grant No. 2018YFB2202100), and the Science and Technology Planning Project of Wenzhou City (Grant No. G20180012).
Corresponding Authors:  Peng-Jun Wang     E-mail:  wangpengjun@wzu.edu.cn

Cite this article: 

Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君) Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions 2021 Chin. Phys. B 30 057201

[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[2] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[3] Di X, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[4] Ang Y S, Yang S, Zhang C, Ma Z and Ang L K 2018 Phys. Rev. B 96 245410
[5] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science 362 1149
[6] Rycerz A 2008 Phys. Status Solidi A 205 1281
[7] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[8] Settnes M, Power S R, Brandbyge M and Jauho A P 2016 Phys. Rev. Lett. 117 276801
[9] Jia P, Chen W, Qiao J, Zhang M, Zheng X, Xue Z, Liang R, Tian C, He L, Di Z and Wang W 2019 Nat. Commun. 10 3127
[10] Pan H, Li X, Zhang F and Yang S A 2015 Phys. Rev. B 92 041404
[11] Cheng S G, Zhou J, Jiang H and Sun Q F 2016 New J. Phys. 18 103024
[12] Jones G W, Bahamon D A, Neto A H C and Pereira V M 2017 Nano Lett. 17 5304
[13] Suszalski D, Rut G and Rycerz A 2020 J. Phys. Mater. 3 015006
[14] Wang H and Wang J 2018 Chin. Phys. B 27 107402
[15] Yesilyurt C, Siu Z B, Tan S G, Liang G, Yang S A and Jalil M B A 2019 Sci. Rep. 9 4480
[16] Milovanović S P and Peeters F M 2016 Appl. Phys. Lett. 109 203108
[17] Torres V, Silva P, de Souza E A T, Silva L A and Bahamon D A 2019 Phys. Rev. B 100 205411
[18] Faria D, León C, Lima L R F, Latgé A and Sandler N 2020 Phys. Rev. B 101 081410
[19] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[20] Ye Z, Sun D and Heinz T F 2017 Nat. Phys. 13 26
[21] Li H K, Fong K Y, Zhu H, Li Q, Wang S, Yang S, Wang Y and Zhang X 2019 Nat. Photon. 13 397
[22] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[23] Wang J J, Liu S, Wang J and Liu J F 2018 Phys. Rev. B 98 195436
[24] Kim Y and Lee J D 2019 Nano Lett. 19 4166
[25] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X and Zhang X 2016 Nat. Nanotechnol. 11 598
[26] Hsieh T C, Chou M Y and Wu Y S 2018 Phy. Rev. Mater. 2 034003
[27] Qi P and Mi W 2019 Phys. Rev. Appl. 11 14011
[28] Grujić M M, Tadić M Ž and Peeters F M 2014 Phys. Rev. Lett. 113 46601
[29] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[30] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B 97 085427
[31] Premasiri K and Gao X P A 2019 J. Phys.: Condens. Matter 31 193001
[32] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[33] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 76802
[34] Ezawa M 2013 Appl. Phys. Lett. 102 172103
[35] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[36] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 43113
[37] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[38] Qian X, Liu J, Fu L and Li J 2013 Science 346 1344
[39] Yesilyurt C, Tan S G, Liang G, and Jalil M B A 2015 Appl. Phys. Express 8 105201
[40] Wang S K and Wang J 2015 Chin. Phys. B 24 037202
[41] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 35450
[42] Lan J, Ye E J, Sui W Q and Zhao X A 2013 Phys. Chem. Chem. Phys. 15 671
[43] Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B and Zhou G H 2019 J. Appl. Phys. 125 244304
[44] Jin C L, Lan J, Zhao X A and Sui W Q 2016 Eur. Phys. J. B 89 187
[45] Ando T 1991 Phys. Rev. B 44 8017
[46] Rachel S and Ezawa M 2014 Phys. Rev. B 89 195303
[47] Lü X L, Xie Y and Xie H 2018 New J. Phys. 20 43054
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[14] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!