Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077103    DOI: 10.1088/1674-1056/21/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Si doping in wells of AlGaN/GaN superlattice on the characteristics of epitaxial layer

Zhang Wei(张伟), Xue Jun-Shuai(薛军帅), Zhou Xiao-Wei (周晓伟), Zhang Yue(张月), Liu Zi-Yang(刘子阳), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  AlGaN/GaN superlattice grown on the top of GaN buffer induces the broadening of the full width at half maximum of (102) and (002) x-ray diffraction rocking curves. With the increase of Si-doped concentration in GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. Significant increase of the full width at half maximum of the (002) rocking curves when the doping concentration reaches 2.5?1019 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the AlGaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.
Keywords:  AlGaN/GaN      superlattice      Si doping  
Received:  06 December 2011      Revised:  09 January 2012      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Key Science & Technology Special Project of China (Grant No. 2008ZX01002-002) and the Major Program and State Key Program of National Natural Science Foundation of China (Grant No. 60890191).
Corresponding Authors:  Zhang Wei     E-mail:  zwxidian@mail.xidian.edu.cn

Cite this article: 

Zhang Wei(张伟), Xue Jun-Shuai(薛军帅), Zhou Xiao-Wei (周晓伟), Zhang Yue(张月), Liu Zi-Yang(刘子阳), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) Effect of Si doping in wells of AlGaN/GaN superlattice on the characteristics of epitaxial layer 2012 Chin. Phys. B 21 077103

[1] Khanna R, Allums K K, Abernathy C R, Pearton S J, Kim J, Ren F, Dwivedi R, Fogarty T N and Wilkins R 2004 Appl. Phys. Lett. 85 3131
[2] Luo B, Johnson J W, Ren F, Allums K K, Abernathy C R, Pearton S J, Dwivedi R, Fogarty T N, Wilkins R, Dabiran A M, Wowchack A M, Polley C J, Chow P P and Baca A G 2001 Appl. Phys. Lett. 79 2196
[3] Zhu T G, Chowdhury U, Denyszyn J C, Wong M M and Dupuis R D 2003 J. Cryst. Growth 248 548
[4] Dadgar A, Hums C, Diez A, Blasing J and Krost A 2006 J. Cryst. Growth 297 279
[5] Heber J D, Gmachl C, Ng H M and Cho A Y 2002 Appl. Phys. Lett. 81 1237
[6] Gmachl C, Ng H M, Chu S N G and Cho A Y 2000 Appl. Phys. Lett. 77 3722
[7] Hofstetter D, Baumann E, Giorgetta F R, Graf M, Maier M, Guillot F, Bellet-Amalric E and Monrot E 2006 Appl. Phys. Lett. 88 121112
[8] Kandaswamy P K, Machhadani H, Kostar Y, Sakr S, Das A, Tchernycheva M, Rapenne L, Sarigiannidou E, Julien F H and Monroy E 2010 Appl. Phys. Lett. 96 141903
[9] Machhadani H, Kandaswamy P, Sakr S, Vardi A, Wirtmuller A, Nevou L, Guillot F, Pozzovivo G, Tchernycheva M, Lupu A, Vivien L, Crozat P, Warde E, Bougerol C, Schacham S, Strasser G, Bahir G, Monroy E and Julien F H 2009 New J. Phys. 11 125023
[10] Kandaswamy P K, Guillot F, Bellet-Amalric E, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien F H, Baumann E, Giorgetta F R, Hofstetter D, Remmele T, Albrecht M, Birner S and Dang L S 2008 J. Appl. Phys. 104 093501
[11] Zhang W, Zhang Y, Xue J S, Zhang Y, L? L, Zhang J C and Hao Y 2011 Appl. Phys. Lett. 99 162105
[12] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[13] Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, GoBel H, Christiansen S, Albrecht M and Strunk H P 1998 Philos. Mag. A 77 1013
[14] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[15] Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145
[16] Mathis S K, Romanov A E, Chen L F, Beltz G E, Pompe W and Speck J S 2001 J. Crysta. Growth 231 371
[17] Germain M, Leys M, Boeykens S, Degroote S, Wang W F, Schreurs D, Ruythooren W, Choi K H, Daele B V, Tendeloo G V and Borghs G 2003 Mat. Res. Soc. Symp. Proc. 798 Y10.22
[18] Weng X, Acord J D, Jain A, Dickey E C and Redwing J M 2007 J. Electron. Mater. 36 346
[19] Feltin E, Beaumont B, Laugt M, Mierry P D, Vennegues P, Lahreche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
[20] Nikishin S A, Faleev N N, Antipov V G, Francoeur S, de Peralta L G, Seryogin G A, Temkin H, Prokofyeva T I, Holtz M and Chu S N G 1999 Appl. Phys. Lett. 75 2073
[21] Liaw H M, Venugopal R, Wan J and Melloch M R 2001 Solid-State Electron. 45 1173
[22] Kuball M 2001 Surf. Interface. Anal. 31 987
[23] Demangeot F, Frandon J, Renucci M A, Briot O, Gil B and Aulombard R L 1996 Solid State Commun. 100 207
[24] Bai J, Wang T, Lee K B, Parbrook P J, Wang Q and Cullis A G 2001 Surf. Interface. Anal. 602 2643
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[9] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[10] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[11] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[14] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[15] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
No Suggested Reading articles found!