CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of Si doping in wells of AlGaN/GaN superlattice on the characteristics of epitaxial layer |
Zhang Wei(张伟)†, Xue Jun-Shuai(薛军帅), Zhou Xiao-Wei (周晓伟), Zhang Yue(张月), Liu Zi-Yang(刘子阳), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China |
|
|
Abstract AlGaN/GaN superlattice grown on the top of GaN buffer induces the broadening of the full width at half maximum of (102) and (002) x-ray diffraction rocking curves. With the increase of Si-doped concentration in GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. Significant increase of the full width at half maximum of the (002) rocking curves when the doping concentration reaches 2.5?1019 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the AlGaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.
|
Received: 06 December 2011
Revised: 09 January 2012
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
68.65.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Key Science & Technology Special Project of China (Grant No. 2008ZX01002-002) and the Major Program and State Key Program of National Natural Science Foundation of China (Grant No. 60890191). |
Corresponding Authors:
Zhang Wei
E-mail: zwxidian@mail.xidian.edu.cn
|
Cite this article:
Zhang Wei(张伟), Xue Jun-Shuai(薛军帅), Zhou Xiao-Wei (周晓伟), Zhang Yue(张月), Liu Zi-Yang(刘子阳), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) Effect of Si doping in wells of AlGaN/GaN superlattice on the characteristics of epitaxial layer 2012 Chin. Phys. B 21 077103
|
[1] |
Khanna R, Allums K K, Abernathy C R, Pearton S J, Kim J, Ren F, Dwivedi R, Fogarty T N and Wilkins R 2004 Appl. Phys. Lett. 85 3131
|
[2] |
Luo B, Johnson J W, Ren F, Allums K K, Abernathy C R, Pearton S J, Dwivedi R, Fogarty T N, Wilkins R, Dabiran A M, Wowchack A M, Polley C J, Chow P P and Baca A G 2001 Appl. Phys. Lett. 79 2196
|
[3] |
Zhu T G, Chowdhury U, Denyszyn J C, Wong M M and Dupuis R D 2003 J. Cryst. Growth 248 548
|
[4] |
Dadgar A, Hums C, Diez A, Blasing J and Krost A 2006 J. Cryst. Growth 297 279
|
[5] |
Heber J D, Gmachl C, Ng H M and Cho A Y 2002 Appl. Phys. Lett. 81 1237
|
[6] |
Gmachl C, Ng H M, Chu S N G and Cho A Y 2000 Appl. Phys. Lett. 77 3722
|
[7] |
Hofstetter D, Baumann E, Giorgetta F R, Graf M, Maier M, Guillot F, Bellet-Amalric E and Monrot E 2006 Appl. Phys. Lett. 88 121112
|
[8] |
Kandaswamy P K, Machhadani H, Kostar Y, Sakr S, Das A, Tchernycheva M, Rapenne L, Sarigiannidou E, Julien F H and Monroy E 2010 Appl. Phys. Lett. 96 141903
|
[9] |
Machhadani H, Kandaswamy P, Sakr S, Vardi A, Wirtmuller A, Nevou L, Guillot F, Pozzovivo G, Tchernycheva M, Lupu A, Vivien L, Crozat P, Warde E, Bougerol C, Schacham S, Strasser G, Bahir G, Monroy E and Julien F H 2009 New J. Phys. 11 125023
|
[10] |
Kandaswamy P K, Guillot F, Bellet-Amalric E, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien F H, Baumann E, Giorgetta F R, Hofstetter D, Remmele T, Albrecht M, Birner S and Dang L S 2008 J. Appl. Phys. 104 093501
|
[11] |
Zhang W, Zhang Y, Xue J S, Zhang Y, L? L, Zhang J C and Hao Y 2011 Appl. Phys. Lett. 99 162105
|
[12] |
Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
|
[13] |
Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, GoBel H, Christiansen S, Albrecht M and Strunk H P 1998 Philos. Mag. A 77 1013
|
[14] |
Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
|
[15] |
Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145
|
[16] |
Mathis S K, Romanov A E, Chen L F, Beltz G E, Pompe W and Speck J S 2001 J. Crysta. Growth 231 371
|
[17] |
Germain M, Leys M, Boeykens S, Degroote S, Wang W F, Schreurs D, Ruythooren W, Choi K H, Daele B V, Tendeloo G V and Borghs G 2003 Mat. Res. Soc. Symp. Proc. 798 Y10.22
|
[18] |
Weng X, Acord J D, Jain A, Dickey E C and Redwing J M 2007 J. Electron. Mater. 36 346
|
[19] |
Feltin E, Beaumont B, Laugt M, Mierry P D, Vennegues P, Lahreche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
|
[20] |
Nikishin S A, Faleev N N, Antipov V G, Francoeur S, de Peralta L G, Seryogin G A, Temkin H, Prokofyeva T I, Holtz M and Chu S N G 1999 Appl. Phys. Lett. 75 2073
|
[21] |
Liaw H M, Venugopal R, Wan J and Melloch M R 2001 Solid-State Electron. 45 1173
|
[22] |
Kuball M 2001 Surf. Interface. Anal. 31 987
|
[23] |
Demangeot F, Frandon J, Renucci M A, Briot O, Gil B and Aulombard R L 1996 Solid State Commun. 100 207
|
[24] |
Bai J, Wang T, Lee K B, Parbrook P J, Wang Q and Cullis A G 2001 Surf. Interface. Anal. 602 2643
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|