Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098104    DOI: 10.1088/1674-1056/ac657f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB

Hong Wang(王虹)1,2, Zunren Lv(吕尊仁)1,2,†, Shuai Wang(汪帅)1,2, Haomiao Wang(王浩淼)1,2, Hongyu Chai(柴宏宇)1,2, Xiaoguang Yang(杨晓光)1,2, Lei Meng(孟磊)1,2, Chen Ji(吉晨)3,4, and Tao Yang(杨涛)1,2,‡
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
4 Zhejiang Laboratory, Hangzhou 310027, China
Abstract  We report on the fabrication and characterization of InAs/GaAs chirped multilayer quantum-dot superluminescent diodes (CMQD-SLDs) with and without direct Si doping in QDs. It was found that both the output power and the spectral width of the CMQD-SLDs were significantly enhanced by direct Si doping in the QDs. The output power and spectral width have been increased by approximately 18.3% and 40%, respectively. Moreover, we shortened the cavity length of the doped CMQD-SLD and obtained a spectral width of 106 nm. In addition, the maximum output power and spectral width of the CMQD-SLD doped directly with Si can be further increased to 16.6 mW and 114 nm, respectively, through anti-reflection coating and device packaging. The device exhibited the smallest spectral dip of 0.2 dB when the spectrum was widest. The improved performances of the doped CMQD-SLD can be attributed to the direct doping of Si in the QDs, optimization of device structure and device packaging.
Keywords:  chirped quantum-dot      superluminescent diodes      direct Si doping  
Received:  31 December 2021      Revised:  25 March 2022      Accepted manuscript online:  08 April 2022
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62035012, 62074143, and 62004191) and Zhejiang Lab (Grant No. 2020LC0AD02).
Corresponding Authors:  Zunren Lv, Tao Yang     E-mail:  lvzunren@semi.ac.cn;tyang@semi.ac.cn

Cite this article: 

Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛) Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB 2022 Chin. Phys. B 31 098104

[1] Burns W, Moeller R and Chen C L 1983 J. Lightwave Technol. 1 44
[2] Sampson D D and Holloway W T 1994 Electron. Lett. 30 1611
[3] Ozaki N, Yamauchi S, Hayashi Y, Watanabe E, Ohsato H, Ikeda N, Sugimoto Y, Furuki K, Oikawa Y, Miyaji K, Childs D T D and Hogg R A 2019 J. Phys. D 52 225105
[4] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[5] Ray S K, Choi T L, Groom K M, Liu H Y, Hopkinson M and Hogg R A 2007 IEEE Photonics Technol. Lett. 19 109
[6] Akcay C, Parrein P and Rolland J P 2002 Appl. Opt. 41 5256
[7] Zhang Z Y, Jiang Q, Luxmoore I J and Hogg R A 2009 Nanotechnology 20 055204
[8] Yao R, Weir N, Lee C S and Guo W 2016 IEEE Photonics J. 8 1601007
[9] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[10] Singh S P and Gupta V L 2003 Electron. Lett. 39 862
[11] Wu J, Lv X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[12] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[13] Li X K, Jin P, Liang D C, Wu J and Wang Z G 2013 Chin. Phys. B 22 048102
[14] Hu F J, Jin P, Wu Y H, Wang F F, Wei H and Wang Z G 2015 Chin. Phys. B 24 104212
[15] Judson P D L, Groom K M, Childs D T D, Hopkinson M, Krstajic N and Hogg R A 2009 Microelectron. J. 40 588
[16] Li L H, Rossetti M and Fiore A 2005 J. Cryst. Growth 278 680
[17] Abdul Majid M 2018 J. Nanophotonics 12 026007
[18] Wang H, Lv Z R, Zhang Z K, Ding Y Y, Wang H M, Yang X G and Yang T 2020 AIP Adv. 10 045202
[19] Siming C, Kejia Z, Ziyang Z, Orchard J R, Childs D T D, Hugues M, Wada O and Hogg R A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1900209
[20] Lu Y, Cao V, Liao M, Li W, Tang M, Li A, Smowton P, Seeds A, Liu H and Chen S 2020 Opt. Lett. 45 5468
[21] Forrest A F, Krakowski M, Bardella P and Cataluna M A 2019 Opt. Express 27 10981
[22] Liu Q L, Hou C C, Chen H M, Ning J Q, Li Q Z, Huang Y Q, Zhao Z Y, Wang Z G, Jin P and Zhang Z Y 2018 J. Nanosci. Nanotechnol. 18 7536
[23] Kita T, Hasagawa R and Inoue T 2011 J. Appl. Phys. 110 103511
[24] Yang X, Wang K, Gu Y, Ni H, Wang X, Yang T and Wang Z G 2013 Sol. Energy Mater. Sol. Cells 113 144
[25] Lv Z R, Zhang Z K, Yang X G and Yang T 2018 Appl. Phys. Lett. 113 011105
[1] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[2] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[3] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[4] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 0, (): 88503-088503.
[5] Insulator-metal transition in CaTiO3 quantum dots induced by ultrafast laser pulses
Tong Liu(刘彤), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2020, 29(5): 058101.
[6] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[7] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[8] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[9] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[10] Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot
Ben Ma(马奔), Si-Hang Wei(魏思航), Ze-Sheng Chen(陈泽升), Xiang-Jun Shang(尚向军), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(9): 097802.
[11] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[12] Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition
Lu Zhang(张璐), Yongsheng Wang(王永生), Yanfang Dong(董艳芳), Xuan Zhao(赵宣), Chen Fu(付晨), Dawei He(何大伟). Chin. Phys. B, 2018, 27(1): 018101.
[13] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[14] Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor
Hao Wang(王昊), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Wang Zhang(张望), Qi-Feng Lyu(吕奇峰), Liu-Hong Ma(马刘红), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(10): 108102.
[15] Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots
Xiang-Jun Shang(尚向军), Jian-Xing Xu(徐建星), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Si-Hang Wei(魏思航), Mi-Feng Li(李密峰), Guo-Wei Zha(查国伟), Li-Chun Zhang(张立春), Ying Yu(喻颖), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2016, 25(10): 107805.
No Suggested Reading articles found!