Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077201    DOI: 10.1088/1674-1056/21/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A spin switch device based on a triple quantum dots superlattice using the Dicke effect

An Xing-Tao(安兴涛)a)b)†, Mu Hui-Ying(穆惠英)c), Xian Li-Fen(咸立芬)a), and Liu Jian-Jun(刘建军) d)
a School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China;
b SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
c Department of Chemistry and Environmental Engineering, Hebei Chemical and Pharmaceutical Vocational Technology College, Shijiazhuang 050026, China;
d Physics Department, Shijiazhuang University, Shijiazhuang 050035, China
Abstract  Spin-dependent transport in a triple quantum dots superlattice system with a bridge coupling to two leads is studied. There exists an odd–even parity oscillation of spin polarization at the central dot level εc = 0 due to the spin-dependent Fano and Dicke effects induced by the quantum interference and the Rashba spin–orbit interaction. In the case of even numbers of triple quantum dots, the device can be used as a spin switch by tuning the energy difference h between the energies of the central and the lateral dots. These results may be helpful to design and fabricate practical spintronic devices.
Keywords:  spin polarization      quantum dots  
Received:  28 December 2011      Revised:  18 January 2012      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.35.Ds (Quantum interference devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047184, 11104059, and 61176089) and the Hebei Province Natural Science Foundation, China (Grant No. A2011208010).
Corresponding Authors:  An Xing-Tao     E-mail:  anxt2005@163.com

Cite this article: 

An Xing-Tao(安兴涛), Mu Hui-Ying(穆惠英), Xian Li-Fen(咸立芬), and Liu Jian-Jun(刘建军) A spin switch device based on a triple quantum dots superlattice using the Dicke effect 2012 Chin. Phys. B 21 077201

[1] Ladrón de Guevara M L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[2] Vorrath T and Brandes T 2003 Phys. Rev. B 68 035309
[3] B黶ser C A, Moreo A and Dagotto E 2004 Phys. Rev. B 70 035402
[4] Orellana P A, Ladrón de Guevara M L and Claro F 2004 Phys. Rev. B 70 233315
[5] Orellana P A, Lara G A and Anda E V 2006 Phys. Rev. B 74 193315
[6] Trocha P and Barnaś J 2008 Phys. Rev. B 78 075424
[7] Vernek E, Orellana P A and Ulloa S E 2010 Phys. Rev. B 82 165304
[8] Trocha P and Barnaś J 2010 J. Non-Crys. Solids 356 1875
[9] Orellana P A, Dominguez-Adameb F and Diezc E 2006 Physica E 35 126
[10] Andergassen S, Meden V, Schoeller H, Splettstoesser J and Wegewijs M R 2010 Nanotechnology 21 272001
[11] Ojeda J H, Pacheco M and Orellana P A 2009 Nanotechnology 20 434013
[12] Orellana P A, Amado M and Dominguez-Adameb F 2008 Nanotechnology 19 195401
[13] Trocha P and Barnaś J 2008 J. Phys.: Condens. Matter 20 125220
[14] Amado M, Orellana P A and Dominguez-Adameb F 2006 Semicond. Sci. Technol. 21 1764
[15] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[16] Li S S and Xia J B 2008 Appl. Phys. Lett. 92 022102
[17] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[18] An X T and Liu J J 2009 Appl. Phys. Lett. 95 163501
[19] An X T and Liu J J 2010 Appl. Phys. Lett. 96 223508
[20] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[21] Sim H S, Lee H W and Chang K J 2001 Phys. Rev. Lett. 87 096803
[22] Orellana P A, Dominguez-Adameb F, Gómez I and Ladrón de Guevara M L 2003 Phys. Rev. B 67 085321
[23] Jana S and Chakrabarti A 2008 Phys. Rev. B 77 155310
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[10] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[11] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[12] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[13] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[14] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[15] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
No Suggested Reading articles found!