Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 098101    DOI: 10.1088/1674-1056/20/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy

Du Yan-Hao(杜彦浩)a), Wu Jie-Jun(吴洁君)a), Luo Wei-Ke(罗伟科)a), John Goldsmithb), Han Tong(韩彤)a), Tao Yue-Bin(陶岳彬)a), Yang Zhi-Jian(杨志坚) a),Yu Tong-Jun(于彤军)a), and Zhang Guo-Yi(张国义)a)
a Research Centre for Wide-gap Semiconductors, School of Physics, Peking University, Beijing 100871, China; b Beijing Yanyuan Research Centre, Sino Nitride Semiconductor LTD, Beijing 100871, China
Abstract  Two strain-state samples of GaN, labelled the strain-relief sample and the quality-improved sample, were grown by hydride vapour phase epitaxy (HVPE), and then characterized by high-resolution X-ray diffraction, photoluminescence and optical microscopy. Two strain states of GaN in HVPE, like 3D and 2D growth modes in metal-organic chemical vapour deposition (MOCVD), provide an effective way to solve the heteroepitaxial problems of both strain relief and quality improvement. The gradual variation method (GVM), developed based on the two strain states, is characterized by growth parameters' gradual variation alternating between the strain-relief growth conditions and the quality-improved growth conditions. In GVM, the introduction of the strain-relief amplitude, which is defined by the range from the quality-improved growth conditions to the strain-relief growth conditions, makes the strain-relief control concise and effective. The 300-μm thick bright and crack-free GaN film grown on a two-inch sapphire proves the effectiveness of GVM.
Keywords:  GaN      hydride vapour phase epitaxy      heteroepitaxy  
Received:  15 March 2011      Revised:  11 May 2011      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  

Cite this article: 

Du Yan-Hao(杜彦浩), Wu Jie-Jun(吴洁君), Luo Wei-Ke(罗伟科), John Goldsmith, Han Tong(韩彤), Tao Yue-Bin(陶岳彬), Yang Zhi-Jian(杨志坚), Yu Tong-Jun(于彤军), and Zhang Guo-Yi(张国义) Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy 2011 Chin. Phys. B 20 098101

[1] Nakamura S 1991 Jpn. J. Appl. Phys. Part 2 30 L1705
[2] Chen Z, Newman S, Brown D, Chung R, Keller S, Mishra U K, Denbaars S P and Nakamura S 2008 Appl. Phys. Lett. 93 191906
[3] Fujito K, Kubo S, Nagaoka H, Mochizuki T, Namita H and Nagao S 2009 J. Crystal Growth 311 3011
[4] Dam C E C, Grzegorczyk A P, Hageman P R and Larsen P K 2006 J. Crystal Growth 290 473
[5] Huang H H, Chao C L, Chi T W, Chang Y L, Liu P C, Tu L W, Tsay J D, Kuo H C, Cheng S J and Lee W I 2009 J. Crystal Growth 311 3029
[6] Darakchieva V, Monemar B, Usui A, Saenger M and Schubert M 2008 J. Crystal Growth 310 959
[7] Polian A, Grimsditch M and Grzegory I 1996 J. Appl. Phys. 79 3343
[8] Funato K, Hashimoto S, Yanashima K, Nakamura F and Ikeda M 1999 Appl. Phys. Lett. 75 1137
[9] Lee S N, Son J K, Paek H S, Sakong T, Lee W, Kim K H, Kim S S, Lee Y J, Noh D Y, Yoon E, Nam O H and Park Y 2004 Phys. Stat. Sol. (c) 1 2458
[10] Tyagi A, Wu F, Young E C, Chakraborty A, Ohta H, Bhat R, Fujito K, DenBaars S P, Nakamura S and Speck J S 2009 Appl. Phys. Lett. bf 95 251905
[11] Song T L, Chua S J, Fitzgerald E A, Chen P and Tripathy S 2003 Appl. Phys. Lett. 83 1545
[12] Wu J, Han X, Li J, Li D, Lu Y, Wei H, Cong G, Liu X, Zhu Q and Wang Z 2005 J. Crystal Growth 279 335
[13] Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager III J W, Jones E, Liliental-Weber Z, Rubin M and Weber E R 1996 Phys. Rev. B 54 17745
[14] Lee K J, Shin E H, Shim S K, Kim T K, Yang G M and Lim K Y 2005 Phys. Stat. Sol. (c) 2 2104
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!