Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 116102    DOI: 10.1088/1674-1056/20/11/116102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optimizing the top profile of a nanowire for maximum forward emission

Wang Dong-Lin(王东林), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Guo Xiao-Tao(郭晓涛), Cao Gui(曹贵), and Feng Hao(冯昊)
Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The optimal top structure of a nanowire quantum emitter single photon source is significant in improving performance. Based on the axial symmetry of a cylindrical nanowire, this paper optimizes the top profile of a nanowire for the maximum forward emission by combining the geometry projection method and the finite element method. The results indicate that the nanowire with a cambered top has the stronger emission in the forward direction, which is helpful to improve the photon collection efficiency.
Keywords:  nanowire      photon collection  
Received:  05 May 2011      Revised:  03 June 2011      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), the National Natural Science Foundation of China (Grant Nos. 60971068, 60908028, and 10979065), the Fundamental Research Funds for the Central Universities of China (Grant No. BUPT2009RC0411), Program for New Century Excellent Talents in University of China (Grant No. NTCE-10-0261), and the Chinese Universities Scientific Fund (Grant No. 2011RC0402).

Cite this article: 

Wang Dong-Lin(王东林), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Guo Xiao-Tao(郭晓涛), Cao Gui(曹贵), and Feng Hao(冯昊) Optimizing the top profile of a nanowire for maximum forward emission 2011 Chin. Phys. B 20 116102

[1] Pauzauskie P J and Yang P 2006 Mater. Today. 9 36
[2] Chen L, Zhang G M, Wang M S and Zhang Q F 2005 Chin. Phys. 14 181
[3] Xiao C W, Yang H T, Shen C M, Li Z A, Zhang H R, Liu F, Yang T Z, Chen S T and Gao H J 2005 Chin. Phys. 14 2269
[4] Liu S S, Wen Y H and Zhu Z Z 2008 Chin. Phys. B 17 2621
[5] Long Y Z, Wang W L, Bai F L, Chen Z J, Jin A Z and Gu C Z 2008 Chin. Phys. B 17 1389
[6] Zou X Q, Xue J M and Wang Y G 2010 Chin. Phys. B 19 036102
[7] Zhang L N, He J, Zhou W, Chen L and Xu Y W 2010 Chin. Phys. B 19 047306
[8] Xu N, Wang B L, Sun H Q and Kong F J 2010 Chin. Phys. B 19 117201
[9] Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P and Lin J Q 2011 Chin. Phys. B 20 037307
[10] Liu R B and Zou B S 2011 Chin. Phys. B 20 047104
[11] Luo Z H, Tang D S, Hai K, Yu F, Chen Y Q, He X W, Peng Y H, Yuan H J and Yang Y 2010 Chin. Phys. B 19 026102
[12] Ren Y, Wang J B, Liu Q F, Han X H and Xue D S 2009 Chin. Phys. B 18 3573
[13] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P and Saykally R J 2002 Nature Mater. 1 106
[14] Duan X, Huang Y, Agarval R and Lieber C M 2003 Nature 421 241
[15] Borgström M T, Zwiller V, Müller E and Imamoglu A 2005 Nano Lett. 5 1439
[16] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[17] Bennett C H, Brassard G and Eckert A K 1992 Sci. Am. 267 50
[18] Wang M Q, Huang Y Z, Chen Q and Cai Z P 2006 IEEE J. Quantum Electron. 42 146
[19] Henneghien A L, Gayral B, Dési`eres Y and Gérard J M 2009 J. Opt. Soc. Am. B 26 12
[20] Maslov A V and Ning C Z 2004 Opt. Lett. 29 572
[21] Gregersen N, Nielsen T R, Claudon J, Gérard J M and Mork J 2008 Opt. Lett. 33 1693
[22] Friedler I, Sauvan C, Hugonin J P, Lalanne P, Claudon J and Gérard J M 2009 Opt. Express. 17 2095
[23] Barnes W L, Bjork G, Gerard J M, Jonsson P, Wasey J A E, Worthing P T and Zwiller V 2002 Eur. Phys. J. D 18 197
[24] Nowicki-Bringuier Y R, Hahner R, Claudon J, Lecamp G, Lalanne P and Gérard J M 2007 Ann. Phys. Fr. 32 151
[25] Norato J, Haber R, Tortorelli D and Bendsoe M P 2004 Int. J. Numer. Methods Eng. 60 2289
[26] Frei W R, Johnson H T and Choquette K D 2008 J. Appl. Phys. 103 033102
[27] Turk G and O'Brien J F 2002 ACM Trans. Graphics 21 855
[28] Frei W R 2007 Excerpt from the Proceedings of the COMSOL Conference Boston bf50 12
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[5] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[13] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!