Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047306    DOI: 10.1088/1674-1056/19/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An oxide/silicon core/shell nanowire metal-oxide semiconductor field-effect transistor

Zhang Li-Ning(张立宁)a), He Jin(何进)a)b), Zhou Wang(周旺)a), Chen Lin(陈林)a), and Xu Yi-Wen(徐艺文)a)
a Tera-Scale Research Centre, Key Laboratory of Microelectronic Devices and Circuits of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China; b Research Centre of Micro- & Nano-Device and Technology, The Key Laboratory of Integrated Microsystems, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Abstract  This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher $I_{\rm on}$/$I_{\rm off}$ ratio after introducing the oxide core into a traditional nanowire MOSFET (TNM). The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off, drain induced barrier lowering and subthreshold swing degradation. Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM.
Keywords:  core/shell      nanowire      nanowire MOSFET  
Received:  05 July 2009      Revised:  02 August 2009      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by National Natural Science Foundation of China (Grant No.~60876027) and Research Fund for the Doctoral Program of Higher Education of China (Grant No.~200800010054).

Cite this article: 

Zhang Li-Ning(张立宁), He Jin(何进), Zhou Wang(周旺), Chen Lin(陈林), and Xu Yi-Wen(徐艺文) An oxide/silicon core/shell nanowire metal-oxide semiconductor field-effect transistor 2010 Chin. Phys. B 19 047306

[1] Auth C P and Plummer J D 1997 IEEE Electron Device Lett. 18 74
[2] Singh N, Agarwal A, Bera L K, Liow T Y, Yang R, Rustagi S C, Tung C H, Kumar R, Lo G Q, Balasubramanian N and Kwong D 2006 IEEE Electron Device Lett. 27 383
[3] Yang B, Buddharaju K, Teo S, Singh N, Lo G and Kwong D 2008 IEEE Electron Device Lett. 29 791
[4] Cui Y, Lauhon L J, Gudiksen M S, Wang J and Lieber C M 2001 Appl. Phys. Lett. 78 2214
[5] Fu J, Singh N, Buddharaju K, Teo S, Shen C, Jiang Y, Zhu C, Yu M, Lo G, Balasubramanian N, Kwong D, Gnani E and Baccarani G 2008 IEEE Electron Device Lett. 29 518
[6] Rustagi S, Singh N, Fang W, Buddharaju K, Omampuliyur S, Teo S, Tung C, Lo G, Balasubramanian N and Kwong D 2007 IEEE Electron Device Lett. 28 1021
[7] Singh N, Fang W, Rustagi S, Budharaju K, Teo S, Mohanraj S, Lo G, Balasubramanian N and Kwong D L 2006 IEEE Electron Device Lett. 27 558
[8] Lauhon L J, Gudiksen M S, Wang D and Lieber C M 2002 Nature 420 57
[9] Waite A M, Lloyd N S, Auhburn P, Evans A G, Ernst T, Achard H, Deleonibus S, Wang Y and Hemment P 2003 ESSDRC} {223
[10] TCAD Sentaurus Device User's Manual} 2007 Synopsys, Mountain View, CA
[11] Wettstein A, Schenk A and Fichtner W 2001 IEEE Trans. Electron Devices 48 279
[12] Wang J, Polizzi E and Lundstrom M S 2004 J. Appl. Phys. 96 2192
[13] Ge L and Fossum J G 2002 IEEE Trans. Electron Devices] 49 287
[14] Ray B and Mahapatra S 2008 IEEE Trans. Electron Devices 55 2409
[15] Yu B, Wang L, Yuan Y, Asbeck P M and Taur Y 2008 IEEE Trans. Electron Devices 55 2846
[16] Choi Y, Asano K, Lindert N, Subramanian V, King T, Bokor J and Hu C 2000 IEEE Electron Device Lett. 21 254
[17] Stern F 1982 Phys. Rev. B 5 4891
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[13] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!