Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070302    DOI: 10.1088/1674-1056/ad342a
GENERAL Prev   Next  

Verifiable quantum secret sharing scheme based on orthogonal product states

Chen-Ming Bai(白晨明)†, Lu Liu(刘璐), and Sujuan Zhang(张素娟)
Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract  In the domain of quantum cryptography, the implementation of quantum secret sharing stands as a pivotal element. In this paper, we propose a novel verifiable quantum secret sharing protocol using the $d$-dimensional product state and Lagrange interpolation techniques. This protocol is initiated by the dealer Alice, who initially prepares a quantum product state, selected from a predefined set of orthogonal product states within the $\mathbb{C}^d \otimes \mathbb{C}^d$ framework. Subsequently, the participants execute unitary operations on this product state to recover the underlying secret. Furthermore, we subject the protocol to a rigorous security analysis, considering both eavesdropping attacks and potential dishonesty from the participants. Finally, we conduct a comparative analysis of our protocol against existing schemes. Our scheme exhibits economies of scale by exclusively employing quantum product states, thereby realizing significant cost-efficiency advantages. In terms of access structure, we adopt a $(t,n)$-threshold architecture, a strategic choice that augments the protocol's practicality and suitability for diverse applications. Furthermore, our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
Keywords:  quantum secret sharing      quantum product state      threshold scheme      unitary operations  
Received:  21 December 2023      Revised:  04 March 2024      Accepted manuscript online:  15 March 2024
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12301590) and the Natural Science Foundation of Hebei Province (Grant No. A2022210002).
Corresponding Authors:  Chen-Ming Bai     E-mail:  baichm@stdu.edu.cn

Cite this article: 

Chen-Ming Bai(白晨明), Lu Liu(刘璐), and Sujuan Zhang(张素娟) Verifiable quantum secret sharing scheme based on orthogonal product states 2024 Chin. Phys. B 33 070302

[1] Shamir A 1979 Commun. ACM 22 612
[2] Blakley G R 1979 In Proceedings of the 1979 International Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, 4-7 June 1979; Volume 48, pp. 313-317
[3] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[4] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[5] Gottesman D 2000 Phys. Rev. A 61 042311
[6] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[7] Grice W P and Qi B 2019 Phys. Rev. A 100 022339
[8] Qin H W, Zhu X H and Dai Y W 2015 Quantum Inf. Process 14 2997
[9] Lipinska V, Murta G, Ribeiro J and Wehner S 2020 Phys. Rev. A 101 032332
[10] Gu J, Cao X Y, Yin H L, et al. 2021 Opt. Express 29 9165
[11] Mashhadi S 2022 Journal of Applied Security Research 17 123
[12] Li F, Chen T and Zhu S 2022 Physica A 606 128122
[13] Li F, Luo M, Zhu H, et al. 2023 Physica A 612 128494
[14] Li L and Li Z 2023 Entropy 25 265
[15] Xu J, Li X, Han Y, et al 2023 Frontiers in Physics 11 1213153
[16] Wang J, Li L, Peng H and Yang Y 2017 Phys. Rev. A 95 022320
[17] Tavakoli A, Herbauts I, Zukowski M and Bourennane M 2015 Phys. Rev. A 92 030302
[18] Qin H and Dai Y 2016 Information Processing Letters 116 351
[19] Bai C M, Zhang S and Liu L 2021 International Journal of Theoretical Physics 60 3993
[20] Liu S, Lu Z, Wang P, et al. 2023 npj Quantum Information 9 92
[21] Shen A, Cao X Y, Wang Y, et al. 2023 Science China Physics, Mechanics & Astronomy 66 260311
[22] Li C L, Fu Y, Liu W B, et al. 2023 Phys. Rev. Research 5 033077
[23] Gu J, Xie Y M, Liu W B, et al. 2021 Opt. Express 29 32244
[24] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[25] Hsu L Y, Li C M 2005 Phys. Rev. A 71 022321
[26] Yang Y G, Wen Q Y and Zhu F C 2007 Sci. China Ser. G 50 331
[27] Hu W, Zhou R G and Luo J 2022 Chin. J. Phys. 77 1701
[28] Xu G B, Wen Q Y, Gao F, Qin S J and Zuo H J 2017 Quantum Inf. Process 16 1
[29] Feng Y and Shi Y 2009 IEEE transactions on information theory 55 2799
[30] Xu G B, Wen Q Y, Qin S J, Yang Y H and Gao F 2016 Phys. Rev. A 93 032341
[31] Zhen X F, Fei S M and Zuo H J 2022 Phys. Rev. A 106 062432
[32] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[33] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[34] Walgate J and Hardy L 2002 Phys. Rev. Lett. 89 147901
[35] Li C Y, Li X H, Deng F G, et al. 2006 Chin. Phys. Lett. 23 2896
[36] Karimipour V, Asoudeh M, Gheorghiu V, Looi S Y and Griffiths R B 2015 Phys. Rev. A 92 030301
[1] Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme
Huan-Yao Jiang(姜欢窈), Min Nie(聂敏), Guang Yang(杨光), Ai-Jing Sun(孙爱晶), Mei-Ling Zhang(张美玲), and Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2024, 33(7): 070303.
[2] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[3] An efficient multiparty quantum secret sharing scheme using a single qudit
Wenwen Hu(胡文文), Bangshu Xiong(熊邦书), and Rigui Zhou(周日贵). Chin. Phys. B, 2023, 32(8): 080303.
[4] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
[5] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[6] Dynamic quantum secret sharing protocol based on two-particle transform of Bell states
Yu-Tao Du(杜宇韬), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2018, 27(8): 080304.
[7] Controlled unknown quantum operations on hybrid systems
Yong He(何勇), Ming-Xing Luo(罗明星). Chin. Phys. B, 2016, 25(12): 120304.
[8] Cryptanalysis and improvement of a quantum secret sharing scheme based on $\chi$-type entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2012, 21(1): 010307.
[9] Quantum secret sharing based on quantum error-correcting codes
Zhang Zu-Rong (张祖荣), Liu Wei-Tao (刘伟涛), Li Cheng-Zu (李承祖). Chin. Phys. B, 2011, 20(5): 050309.
[10] Efficient quantum secret sharing scheme with two-particle entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2011, 20(4): 040306.
[11] Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(5): 050306.
[12] Quantum secret sharing protocol using modulated doubly entangled photons
Wang Chuan(王川) and Zhang Yong(张勇). Chin. Phys. B, 2009, 18(8): 3238-3242.
[13] Enhancing the security of quantum secret sharing against multiphoton attack
Zhang Bin-Bin(张彬彬), Wang Da-Qing(王大庆), Huang Shan-Shan(黄珊珊), and Liu Yu(刘玉). Chin. Phys. B, 2009, 18(6): 2149-2153.
[14] Participant attack on quantum secret sharing based on entanglement swapping
Song Ting-Ting(宋婷婷), Zhang Jie(张劼), Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2009, 18(4): 1333-1337.
[15] Proof of the insecurity of quantum secret sharing based on the Smolin bound entangled states
Yu Ya-Fei(於亚飞) and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2009, 18(4): 1342-1345.
No Suggested Reading articles found!