ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics |
Kaipeng Liu(柳开鹏)1, Shuai Zhou(周帅)1,3, Shiwei Dai(戴士为)2, and Lixin Ge(葛力新)1,† |
1 School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; 2 College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China; 3 Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China |
|
|
Abstract Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz (THz) gain systems [Phys. Rev. B 108 045406 (2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons (SPPs) of the graphene and localized surface phonon polaritons (LSPhP) of nanospheres. We exam nanospheres consisted of several different materials, including SiO$_{2}$, SiC, ZnSe, NaCl, lnSb. Our results suggest that the LSPhP of NaCl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for NaCl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica (SiO$_{2}$) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for NaCl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.
|
Received: 01 September 2024
Revised: 01 October 2024
Accepted manuscript online: 18 October 2024
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
62.20.Qp
|
(Friction, tribology, and hardness)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804288) and the Key Scientific Research Project of Higher Education Institutions in Henan Province, China (Grant No. 20231205164502999). |
Corresponding Authors:
Lixin Ge
E-mail: lixinge@hotmail.com
|
Cite this article:
Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新) Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics 2025 Chin. Phys. B 34 014202
|
[1] Volokitin A I and Persson B N J 2007 Rev. Mod. Phys. 79 1291 [2] Reiche D, Intravaia F and Busch K 2022 APL Photon. 7 030902 [3] Pendry J B 1997 J. Phys.: Condens. Matter 9 10301 [4] Volokitin A I and Persson B N J 2003 Phys. Rev. Lett. 91 106101 [5] Volokitin A I 2019 JETP Lett. 110 397404 [6] Volokitin A I and Persson B N J 2016 Phys. Rev. B 93 035407 [7] Farias M B, Fosco C D, Lombardo F C and Mazzitelli F D 2017 Phys. Rev. D 95 065012 [8] Wang T B, Liu N H, Liu J T and Yu T B 2014 Eur. Phys. J. B 87 15 [9] Volokitin A I and Persson B N J 2011 Phys. Rev. Lett. 106 094502 [10] Farias M B, Kort-KampWJ M and Dalvit D A R 2018 Phys. Rev. B 97 161407 [11] Yu T, Luo R, Wang T B, Zhang D J, Liu W X, Yu T B and Liao Q H 2022 Nanomaterials 12 1148 [12] Oue D, Ding K and Pendry J B 2023 Phys. Rev. A 107 063501 [13] Intravaia F, Oelschläger M, Reiche D, Dalvit D A R and Busch K 2019 Phys. Rev. Lett. 123 120401 [14] Guo X, Milton K A, Kennedy G and Pourtolami N 2023 Phys. Rev. A 107 062812 [15] Reiche D, Dalvit D A R, Busch K and Intravaia F 2017 Phys. Rev. B 95 155448 [16] Fernández A and Fosco C D 2023 Phys. Rev. D 108 116010 [17] Manjavacas A and García de Abajo F J 2010 Phys. Rev. Lett. 105 113601 [18] Manjavacas A and García de Abajo F J 2010 Phys. Rev. A 82 063827 [19] Sanders S, Kort-Kamp W J M, Dalvit D A R and Manjavacas A 2019 Commun. Phys. 2 71 [20] Zhao R, Manjavacas A, García de Abajo F J and Pendry J B 2012 Phys. Rev. Lett. 109 123604 [21] Manjavacas A, Rodríguez-Fortuño F J, García de Abajo F J and Zayats A V 2017 Phys. Rev. Lett. 118 133605 [22] Khosravi F, Sun W, Khandekar C, Li T and Jacob Z 2024 New J. Phys. 26 053006 [23] Wang T B, Zhou Y, Mu H Q, Shehzad K, Zhang D J, LiuWX and Liao Q H 2022 Nanotechnology 33 245001 [24] Jiang Q D and Wilczek F 2019 Phys. Rev. B 99 165402 [25] Yu T, You W, Wang T, Yu T B and Liao Q H 2023 Results Phys. 52 106902 [26] Ahn J, Xu Z, Bang J, Ju P, Gao X and Li T 2020 Nat. Nanotechnol. 15 89 [27] Ahn J, Xu Z, Bang J, Deng Y H, Hoang T M, Han Q, Ma R and Li T 2018 Phys. Rev. Lett. 121 033603 [28] Jin Y, Yan J, Rahman S J, Li J, Yu X and Zhang J 2021 Photon. Res. 9 1344 [29] Ju P, Jin Y, Shen K, Duan Y, Xu Z, Gao X, Ni X and Li T 2023 Nano Lett. 23 10157 [30] Xu Z, Jacob Z and Li T 2020 Nanophotonics 10 537 [31] Xu Z, Ju P, Shen K, Jin Y, Jacob Z and Li T 2024 arXiv: 2403.06051 [quant-ph] [32] Ge L 2023 Phys. Rev. B 108 045406 [33] Otsuji T, Popov V and Ryzhii V 2014 J. Phys. D: Appl. Phys. 47 094006 [34] Fateev D V, Polischuk O V, Mashinsky K V, Moiseenko I M, Morozov M Y and Popov V V 2021 Phys. Rev. Appl. 15 034043 [35] Chen P Y and Jung J 2016 Phys. Rev. Appl. 5 064018 [36] Kotov O V and Lozovik Y E 2017 Phys. Rev. B 96 235403 [37] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.: Condens. Matter 25 215301 [38] Dubinov A A, Aleshkin V Y, Mitin V, Otsuji T and Ryzhii V 2011 J. Phys.: Condens. Matter 23 145302 [39] Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Otsuji T and Shur M 2020 Graphene-Based Terahertz Electronics and Plasmonics (New York: Jenny Stanford Publishing) pp. 587-601 [40] Foteinopoulou S, Devarapu G C R, Subramania G S, Krishna S and Wasserman D 2019 Nanophotonics 8 2129 [41] Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu I E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119 [42] Qi Y Z, Jiang Q, Xiang H and Han D Z 2023 Chin. Phys. B 32 104202 [43] Zhu X, Meng B, Wang D, Chen X, Liao L, Jiang M and Wei Z 2022 Chin. Phys. B 31 047801 [44] Xue T, Li Y B, Song H Y, Wang X G, Zhang Q, Fu S F, Zhou S and Wang X Z 2023 Chin. Phys. B 33 014207 [45] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803 [46] Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, de Heer W A and Potemski M 2008 Phys. Rev. Lett. 101 267601 [47] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G 2008 Appl. Phys. Lett. 92 042116 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|