Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014202    DOI: 10.1088/1674-1056/ad886c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics

Kaipeng Liu(柳开鹏)1, Shuai Zhou(周帅)1,3, Shiwei Dai(戴士为)2, and Lixin Ge(葛力新)1,†
1 School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China;
2 College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China;
3 Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
Abstract  Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz (THz) gain systems [Phys. Rev. B 108 045406 (2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons (SPPs) of the graphene and localized surface phonon polaritons (LSPhP) of nanospheres. We exam nanospheres consisted of several different materials, including SiO$_{2}$, SiC, ZnSe, NaCl, lnSb. Our results suggest that the LSPhP of NaCl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for NaCl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica (SiO$_{2}$) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for NaCl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.
Keywords:  quantum friction      surface phonon polaritons      surface plasmon polaritons      graphene  
Received:  01 September 2024      Revised:  01 October 2024      Accepted manuscript online:  18 October 2024
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  62.20.Qp (Friction, tribology, and hardness)  
  61.48.Gh (Structure of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804288) and the Key Scientific Research Project of Higher Education Institutions in Henan Province, China (Grant No. 20231205164502999).
Corresponding Authors:  Lixin Ge     E-mail:  lixinge@hotmail.com

Cite this article: 

Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新) Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics 2025 Chin. Phys. B 34 014202

[1] Volokitin A I and Persson B N J 2007 Rev. Mod. Phys. 79 1291
[2] Reiche D, Intravaia F and Busch K 2022 APL Photon. 7 030902
[3] Pendry J B 1997 J. Phys.: Condens. Matter 9 10301
[4] Volokitin A I and Persson B N J 2003 Phys. Rev. Lett. 91 106101
[5] Volokitin A I 2019 JETP Lett. 110 397404
[6] Volokitin A I and Persson B N J 2016 Phys. Rev. B 93 035407
[7] Farias M B, Fosco C D, Lombardo F C and Mazzitelli F D 2017 Phys. Rev. D 95 065012
[8] Wang T B, Liu N H, Liu J T and Yu T B 2014 Eur. Phys. J. B 87 15
[9] Volokitin A I and Persson B N J 2011 Phys. Rev. Lett. 106 094502
[10] Farias M B, Kort-KampWJ M and Dalvit D A R 2018 Phys. Rev. B 97 161407
[11] Yu T, Luo R, Wang T B, Zhang D J, Liu W X, Yu T B and Liao Q H 2022 Nanomaterials 12 1148
[12] Oue D, Ding K and Pendry J B 2023 Phys. Rev. A 107 063501
[13] Intravaia F, Oelschläger M, Reiche D, Dalvit D A R and Busch K 2019 Phys. Rev. Lett. 123 120401
[14] Guo X, Milton K A, Kennedy G and Pourtolami N 2023 Phys. Rev. A 107 062812
[15] Reiche D, Dalvit D A R, Busch K and Intravaia F 2017 Phys. Rev. B 95 155448
[16] Fernández A and Fosco C D 2023 Phys. Rev. D 108 116010
[17] Manjavacas A and García de Abajo F J 2010 Phys. Rev. Lett. 105 113601
[18] Manjavacas A and García de Abajo F J 2010 Phys. Rev. A 82 063827
[19] Sanders S, Kort-Kamp W J M, Dalvit D A R and Manjavacas A 2019 Commun. Phys. 2 71
[20] Zhao R, Manjavacas A, García de Abajo F J and Pendry J B 2012 Phys. Rev. Lett. 109 123604
[21] Manjavacas A, Rodríguez-Fortuño F J, García de Abajo F J and Zayats A V 2017 Phys. Rev. Lett. 118 133605
[22] Khosravi F, Sun W, Khandekar C, Li T and Jacob Z 2024 New J. Phys. 26 053006
[23] Wang T B, Zhou Y, Mu H Q, Shehzad K, Zhang D J, LiuWX and Liao Q H 2022 Nanotechnology 33 245001
[24] Jiang Q D and Wilczek F 2019 Phys. Rev. B 99 165402
[25] Yu T, You W, Wang T, Yu T B and Liao Q H 2023 Results Phys. 52 106902
[26] Ahn J, Xu Z, Bang J, Ju P, Gao X and Li T 2020 Nat. Nanotechnol. 15 89
[27] Ahn J, Xu Z, Bang J, Deng Y H, Hoang T M, Han Q, Ma R and Li T 2018 Phys. Rev. Lett. 121 033603
[28] Jin Y, Yan J, Rahman S J, Li J, Yu X and Zhang J 2021 Photon. Res. 9 1344
[29] Ju P, Jin Y, Shen K, Duan Y, Xu Z, Gao X, Ni X and Li T 2023 Nano Lett. 23 10157
[30] Xu Z, Jacob Z and Li T 2020 Nanophotonics 10 537
[31] Xu Z, Ju P, Shen K, Jin Y, Jacob Z and Li T 2024 arXiv: 2403.06051 [quant-ph]
[32] Ge L 2023 Phys. Rev. B 108 045406
[33] Otsuji T, Popov V and Ryzhii V 2014 J. Phys. D: Appl. Phys. 47 094006
[34] Fateev D V, Polischuk O V, Mashinsky K V, Moiseenko I M, Morozov M Y and Popov V V 2021 Phys. Rev. Appl. 15 034043
[35] Chen P Y and Jung J 2016 Phys. Rev. Appl. 5 064018
[36] Kotov O V and Lozovik Y E 2017 Phys. Rev. B 96 235403
[37] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.: Condens. Matter 25 215301
[38] Dubinov A A, Aleshkin V Y, Mitin V, Otsuji T and Ryzhii V 2011 J. Phys.: Condens. Matter 23 145302
[39] Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Otsuji T and Shur M 2020 Graphene-Based Terahertz Electronics and Plasmonics (New York: Jenny Stanford Publishing) pp. 587-601
[40] Foteinopoulou S, Devarapu G C R, Subramania G S, Krishna S and Wasserman D 2019 Nanophotonics 8 2129
[41] Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu I E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119
[42] Qi Y Z, Jiang Q, Xiang H and Han D Z 2023 Chin. Phys. B 32 104202
[43] Zhu X, Meng B, Wang D, Chen X, Liao L, Jiang M and Wei Z 2022 Chin. Phys. B 31 047801
[44] Xue T, Li Y B, Song H Y, Wang X G, Zhang Q, Fu S F, Zhou S and Wang X Z 2023 Chin. Phys. B 33 014207
[45] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[46] Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, de Heer W A and Potemski M 2008 Phys. Rev. Lett. 101 267601
[47] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G 2008 Appl. Phys. Lett. 92 042116
[1] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(1): 027503.
[2] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[3] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[4] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[5] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[6] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[7] Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽). Chin. Phys. B, 2024, 33(5): 054210.
[8] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[9] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[10] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[11] Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[12] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[13] Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2024, 33(3): 037506.
[14] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[15] Valley transport in Kekulé structures of graphene
Juan-Juan Wang(王娟娟) and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017801.
No Suggested Reading articles found!