| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Displacement damage of the space broad-spectrum proton in semiconductor materials |
| Yue-Qian Jiang(姜月千)1,†, Li-Chao Tian(田立朝)1,†, Guo-Bo Zhang(张国博)1,‡, Run-Zhou Yu(余润洲)1, Bi-Hao Xu(徐碧浩)1, Xiang-Cheng Li(李翔城)2, Yan-Qing Deng(邓彦卿)2, De-Bin Zou(邹德滨)1, Tong Wu(吴桐)2, Yan-Yun Ma(马燕云)3,4, and Xiao-Hu Yang(杨晓虎)1,§ |
1 College of Science, National University of Defense Technology, Changsha 410073, China; 2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 3 School of Automation and Electronic Information, Xiangtan University, Hunan 411105, China; 4 School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
|
|
Abstract Displacement damage induced by high-energy protons in the space radiation environment presents a serious risk to the reliability of spacecraft materials and onboard electronics. Nevertheless, studies on displacement damage induced by space-based broad-spectrum protons are still limited. In this paper, the nonionizing energy loss (NIEL) of space broad-spectrum protons at different orbital altitudes in semiconductor materials is investigated using Geant4 Monte Carlo simulations. We find that the NIEL of silicon (Si) and gallium arsenide (GaAs) first increases and then decreases with orbital altitude, and that shielding effects can result in either the saturation or continuous increase of NIEL, depending on the shielding layer thickness. A fast NIEL calculation method for arbitrary broad spectra is proposed based on statistical probability principles and the effective proton proportion. Meanwhile, a more uniform spatial distribution of mean damage energy per source particle ($T_{\rm dam}$) deposition from broad-spectrum protons can be achieved by increasing the shielding layer thickness and lowering the orbital altitude. Notably, the relative contribution of displacement damage caused by nuclear reactions decreases with increasing orbital altitude and shielding layer thickness. The results provide a quantitative reference for space displacement damage in semiconductor materials.
|
Received: 10 June 2025
Revised: 30 July 2025
Accepted manuscript online: 11 August 2025
|
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
| |
61.80.Jh
|
(Ion radiation effects)
|
| |
61.82.Fk
|
(Semiconductors)
|
| |
42.88.+h
|
(Environmental and radiation effects on optical elements, devices, and systems)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475252, 12175309, and 12175310), the Fund of National University of Defense Technology (Grant No. 22-ZZCX-068), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25050200 and XDA25010100), and the Natural Science Foundation of Hunan Province, China (Grant No. 2025JJ20007). |
Corresponding Authors:
Guo-Bo Zhang, Xiao-Hu Yang
E-mail: zgb830@163.com;xiaohu.yang@aliyun.com
|
Cite this article:
Yue-Qian Jiang(姜月千), Li-Chao Tian(田立朝), Guo-Bo Zhang(张国博), Run-Zhou Yu(余润洲), Bi-Hao Xu(徐碧浩), Xiang-Cheng Li(李翔城), Yan-Qing Deng(邓彦卿), De-Bin Zou(邹德滨), Tong Wu(吴桐), Yan-Yun Ma(马燕云), and Xiao-Hu Yang(杨晓虎) Displacement damage of the space broad-spectrum proton in semiconductor materials 2025 Chin. Phys. B 34 106103
|
[1] Srour J R, Marshall C J and Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653 [2] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F,WeberWJ,Willaime F, Dudarev S L and Simeone D 2018 J. Nucl. Mater. 512 450 [3] Inguimbert C 2025 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 561 165622 [4] Srour J R and Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740 [5] Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M and Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724 [6] Altamura A R, Acerbi F, Di Ruzza B, Verroi E, Merzi S and Gola A 2021 arXiv:2112.08089 [physics.ins-det] [7] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L and Simeone D 2018 Nat. Commun. 9 1084 [8] Nishiguchi M, Hashinaga T, Nishizawa H, Hayashi H, Okazaki N, Kitagawa M and Fujino T 1990 IEEE Trans. Nucl. Sci. 37 2071 [9] Fleetwood D M 2021 IEEE Trans. Nucl. Sci. 68 509 [10] Kinchin G H and Pease R S 1955 Rep. Prog. Phys. 18 1 [11] Meneghesso G, Paccagnella A, Camin D V, Fedyakin N, Pessina G and Canali C 1997 IEEE Trans. Nucl. Sci. 44 840 [12] Robinson M and Torrens I 1974 Phys. Rev. B 9 5008 [13] Belloir J M, Goiffon V, Virmontois C, Paillet P, Raine M, Magnan P and Gilard O 2016 IEEE Trans. Nucl. Sci. 63 2183 [14] Li J W, Wang Z J, Shi C Y, Xue Y Y, Ning H, Xu R, Jiao Q L and Jia T X 2020 Acta Phys. Sin. 69 098802 (in Chinese) [15] Jouni A, Sicre M, Malherbe V, Mamdy B, Thery T, Belloir J M, Soussan D, De Paoli S, Lorquet V, Lalucaa V, Virmontois C, Gasiot G and Goiffon V 2023 IEEE Trans. Nucl. Sci. 70 515 [16] Wang Z J, Xue Y Y, Wang Z M, Chen W, Yin L Y, Wang X H, Nie Xu, Lai S K, Huang G, Wang M C, Ding L L, He B P, Ma W Y and Gou S L 2024 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1058 168784 [17] Inguimbert C, Arnolda P, Nuns T and Rolland G 2010 IEEE Trans. Nucl. Sci. 57 1915 [18] Chen J, Jung P and Klein H 1998 J. Nucl. Mater. 258-263 1803 [19] Warner J H, Messenger S R,Walters R J, Summers G P, Lorentzen J R, Wilt D M and Smith M A 2006 IEEE Trans. Nucl. Sci. 53 1988 [20] Okuno Y, Okuda S, Akiyoshi M, Oka T, Harumoto M, Omura K, Kawakita S, Imaizumi M, Messenger S R, Lee K H and Yamaguchi M 2017 J. Appl. Phys. 122 114901 [21] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M and Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595 [22] Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M and Lifshitz Y 2001 Radiat. Phys. Chem. 62 301 [23] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P and Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924 [24] Inguimbert C and Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967 [25] Akkerman A, Barak J and Murat M 2020 IEEE Trans. Nucl. Sci. 67 1813 [26] Akkerman A, Barak J and Murat M 2022 IEEE Trans. Nucl. Sci. 69 2056 [27] Inguimbert C, Durand A, Nuns T and Lemière K 2021 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 490 7 [28] Messenger S R, Summers G P, Burke E A, Walters R J and Xapsos M A 2001 Prog. Photovolt. Res. Appl. 9 103 [29] Srour J R and Palko J W 2006 IEEE Trans. Nucl. Sci. 53 3610 [30] Hou S H, Dong S L, Yang J Q, Liu Z L, Guan E H, Lin G, Shao G J, Zhang Y B, Jiang J C and Li X J 2025 IEEE Trans. Nucl. Sci. 72 858 [31] Hou S H, Dong S L, Yang J Q, Guan E H, Liu Z L, Shao G J, Zhang Y B and Li X J 2023 IEEE Trans. Nucl. Sci. 70 2590 [32] Inguimbert C 2021 J. Nucl. Mater. 559 153398 [33] Liu L N, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C and Li B 2023 IEEE Trans. Nucl. Sci. 70 1885 [34] Parize J, Jarrin T, Fées A, Lambert D, Jay A, Morin V, Hemeryck A and Richard N 2024 IEEE Trans. Nucl. Sci. 71 1461 [35] Ye E L, Lai Y F, Shen C X, Hou Y J and Nan H J 2025 Radiat. Phys. Chem. 228 112417 [36] Jun I 2001 IEEE Trans. Nucl. Sci. 48 162 [37] Xing T, Liu S S, Song C, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Wang L P, Chen W, Li K and Zheng X H 2024 AIP Adv. 14 015142 [38] Bai Y R, Li P, He H, Liu F, Li W and He C H 2024 Acta Phys. Sin. 73 052401 (in Chinese) [39] Bai Y R, Li Y H, Liu F, Liao L, He H, Yang W T and He C H 2021 Acta Phys. Sin. 70 172401 (in Chinese) [40] Xue B T, Zhang L M, Liang Y Q, Liu N, Wang D P, Chen L and Wang T S 2023 Acta Phys. Sin. 70 138802 (in Chinese) [41] Luan N T, Ahn S-W, Hwang Y S, Nam U W, Kang S C and Kim H J 2024 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1059 168926 [42] Yang X H, Yu W, Xu H, Zhou H B, Ma Y Y, Zou D B, Yu T P, Ge Z Y, Yin Y and Shao F Q 2014 Phys. Plasmas. 21 063105 [43] Yang X H, Dieckmann M E, Sarri G, Borghesi M 2012 Phys. Plasmas. 19 113110 [44] Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L and Kawata S 2010 Laser Part. Beams 28 319 [45] Zhong P L, Jiang Y Q, Zi M, Li X C, Zhao N, Deng Y Q, Wu T, Yu R Z, Zhang G B, Yang X H and Ma Y Y 2025 Acta Phys. Sin. 74 065201 (in Chinese) [46] Wang C Z 2007 The Research of The Non-ionizing Energy Losses of material by Particles in Space Environment (Master’s Thesis) (Shanghai: Shang Hai University) (in Chinese) [47] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250 [48] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270 [49] Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H and Chen W 2023 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 545 165144 [50] Mendenhall M H and Weller R A 2005 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 227 420 [51] Li J W, Wang Z J, Shi C Y, Xue Y Y, Ning H, Xu R, Jiao Q L and Jia T X 2020 Acta Phys. Sin. 69 098802 (in Chinese) [52] Mohamed M, Tariq J, Khalil E H and Ahmed L 2023 JOM 75 3601 [53] Saeide N and Kiazand F 2022 J. Comput. Electron. 21 513 [54] Summers G P, Burke E A, Shapiro P, Messenger S R and Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372 [55] Gaffey J D and Bilitza D 1994 J. Spacecr. Rockets 31 172 [56] Heynderickx D, Quaghebeur B, Wera J, Daly E J and Evans H D R 2004 Space Weather 2 2004 [57] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268 1818 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|