Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087803    DOI: 10.1088/1674-1056/add90b
Special Issue: SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles

Xiangyu Tong(佟翔宇)1, Ning Chen(陈宁)2, Xiaowen Chen(陈晓文)1, Bin Zhang(张斌)1,†, and Xiaohu Wu(吴小虎)3,‡
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
2 Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250100, China;
3 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China
Abstract  The photothermal properties of dielectric materials at the nanoscale have garnered significant attention, especially in fields such as optical heating, photothermal therapy, and solar utilization. However, although dielectric materials can concentrate and manipulate light at the nanoscale, they cannot provide sufficient photothermal efficiency in a direct absorption solar collector. Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance. This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak, leading to a substantial enhancement of photothermal conversion efficiency. The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles, achieving a 38% increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path. The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field, causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution. Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size. Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization.
Keywords:  silicon-gold hybrid nanoparticles      localized surface plasmon resonance      dielectric nanomaterial      solar utilization  
Received:  07 April 2025      Revised:  13 May 2025      Accepted manuscript online:  15 May 2025
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  88.40.-j (Solar energy)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 52106099) and the Taishan Scholars Program of Shandong.
Corresponding Authors:  Bin Zhang, Xiaohu Wu     E-mail:  zb-sh@163.com;wuxiaohu@pku.edu.cn

Cite this article: 

Xiangyu Tong(佟翔宇), Ning Chen(陈宁), Xiaowen Chen(陈晓文), Bin Zhang(张斌), and Xiaohu Wu(吴小虎) Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles 2025 Chin. Phys. B 34 087803

[1] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk’yanchuk B 2016 Science 354 2472
[2] Jahani S and Jacob Z 2016 Nat. Nanotechnol. 11 23
[3] Zograf G P, Petrov M I, Makarov S V and Kivshar Y S 2021 Adv. Opt. Photon. 13 643
[4] Länk N O, Johansson P and Käll M 2020 ACS Photonics 7 2405
[5] Li Y Q, Yang X Y, Yang Y J, Wang B B, Li X Y and Salas-Montiel R 2019 Opt. Express 27 30971
[6] Jaque D, Maestro L M, Rosal B D, Gonzalez P H, Benayas A and Plaza J L 2014 Nanoscale 6 9494
[7] Tran V A, Lee S W, Phan T T T, Don T N, Vien V, Thanh N C, Ho N N, Doan V D and Le V T 2024 Mater. Today Chem. 40 102272
[8] Shridharan T S, Sivanantham A, Lee J H, Hong S Y, Jeong Y J, Shin S S and Cho I S 2024 Chem. Eng. J. 486 150247
[9] Trinh P V, Anh N N, Cham N T, Tu L T, Hao N V, Thang B H, Chuc N V, Thanh C T, Minh P N and Fukata N 2022 RSC Adv. 12 10514
[10] Li H, Yang S, Hu J, Zhang Z, Tang P, Jiang Y, Tang L and Zou B 2022 Mater. Sci. Semicond. Process. 146 106661
[11] Bubnov A A, Syui A V, Popov A A, Tikhonovskii G V, Pokryshkin N S and Timoshenko V Y 2023 Phys. At. Nucl. 86 2743
[12] Vikram M P, Nishida K, Li C H, Riabov D, Pashina O and Tang Y L 2024 Nanophotonics 13 21928606
[13] Chen T S, Gao J Y, Wang X X, Chen Y Z, Yang H and Qi Y P 2025 Phys. Scr. 100 015533
[14] Rao X J, Zhu H R, Wang X X, Chen Y Z, Qi Y P and Yang H 2025 J. Opt. Soc. Am. B 42 431
[15] Zograf G P, Petrov M I, Zuev D A, Dmitriev P A, Milichko V A, Makarov S V and Belov P A 2017 Nano Lett. 17 2945
[16] Amjad M, Jin H, Du X and Wen D 2018 Sol. Energy Mater. Sol. Cells 182 255
[17] Gu P, Yang H J, Li D Q, Zhu H Q, Chen J, Zhang Z X, Yan Z D, Tang C J, Liu F X, Chen Z and Zhang Z X 2024 J. Phys. Chem. C 128 6431
[18] Zhu X, Zhang J Y, Yang C H, Li Y and Chen Y Y 2023 Chin. Phys. Lett. 40 057801
[19] Yan G D, Zhang Z H, Guo H, Chen J P, Jiang Q S, Cui Q N, Shi Z L and Xu C X 2023 Chin. Phys. B 32 067302
[20] Li X M, Liu F M, Li Z G, Zhu H Y,Wang F and Zhong X L 2023 Chin. Phys. B 32 114205
[21] Chen X W, Qin C Y, Yang L, Li X K, Wu X H and Zhang B 2024 Int. J. Therm. Sci. 200 108980
[22] Zou Y, Qin C Y, Zhai H, Sun C L, Zhang B and Wu X H 2022 Int. J. Therm. Sci. 182 107824
[23] Landfester K 2009 Angew. Chem. Int. Ed. 48 4488
[24] Vallejo J P, Prado J I and Lugo L 2022 Appl. Therm. Eng. 203 117926
[25] Sathish T, Giri J, Saravanan R, Ubaidullah M, Shangdiar S, Iikela S, Sithole T and Amesho K T T 2024 Appl. Therm. Eng. 252 123692
[26] Zhou K, Jee S W, Guo Z, Liu S and Lee J H 2011 Appl. Opt. 50 63
[27] GeW, Zhang X R, Liu M, Lei ZWand Lu Y L 2015 Mater. Res. Innov. 18 701
[28] Gerasimova E N, Uvarov E, Yaroshenko V V, Epifanovskaya O, Shakirova A, Logunov L S, Vlasova O, Parodi A, Zamyatnin A A Jr., Timin A S, Makarov S V and ZyuzinMV 2023 ACS Appl. Nano Mater. 6 18848
[29] Gurbatov S O, Puzikov V, Cherepakhin A, Mitsai E, Tarasenka N, Shevlyagin A, Sergeev A, Kulinich S A and Kuchmizhak A A 2022 Opt. Laser Technol. 147 107666
[30] Cortie M B and McDonagh A M 2011 Chem. Rev. 111 3713
[31] Chehaidar A 2023 Int. J. Therm. Sci. 188 108227
[32] Yu X, Fan S L, Zhu B, El-Hout S I, Zhang J and Chen C L 2025 Green Energy Environ. 10 1377
[33] Gupta A, Ghosh S, Thakur M K, Zhou J, Ostrikov K K, Jin D and Chattopadhyay S 2021 Prog. Mater. Sci. 121 100838
[34] Sun C L, Zou Y, Qin C Y, Chen M J, Li X K, Zhang B and Wu X H 2022 Renew. Energy 189 402
[35] Yang Q H, Qin C Y, Chen N, Liu H T, Zhang B and Wu X H 2024 Int. J. Therm. Sci. 204 109175
[36] Wu Y X, He Q, Zhang H, Meng X L, Min Y Y, Wang Y, Wu X H, Zhang P, Ma Y Y and Zheng Y Q 2025 J. Mater. Chem. C 13 5370
[37] Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305
[38] Rakić A D, Djurišic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[39] Farooq S, Rativa D, Said Z and de Araujo R E 2023 Appl. Therm. Eng. 218 119212
[40] Yang Q H, Qin C Y, Zou Y, Liu H T, Zhang B and Wu X H 2023 Int. J. Therm. Sci. 191 108387
[41] Wang X J, Wang Y Q, Yang X X and Cao Y 2019 Sol. Energy 181 439
[42] Zhao J, Pinchuk A O, Mcmahon J M, Li S Z, Ausman L K, Atkinson A L and Schatz G C 2008 Acc. Chem. Res. 4 1710
[43] Sun C L, Qin C Y, Zhai H, Zhang B and Wu X H 2021 Nanomaterials 11 2722
[44] Chen M J, Wang X, Hu Y and He Y 2020 J. Quant. Spectrosc. Radiat. Transf. 250 107029
[45] Khademalrasool M and Talebzadeh M D 2021 Adv. Powder Technol. 32 2916
[46] Zeng J and Xuan Y 2021 J. Quant. Spectrosc. Radiat. Transf. 269 107692
[47] ChenMJ, He Y R, Huang J and Zhu J Q 2017 Int. J. Heat Mass Transf. 108 1894
[48] Zou Y, Yang L, Li X K, Qin C Y, Zhang B and Wu X H 2024 Heat Transf. Eng. 1 12
[49] Kucherik A, Kutrovskaya S, Osipov A, Gerke M, Chestnov I, Arakelian S, Shalin A S, Evlyukhin A B and Kavokin A V 2019 Sci. Rep. 9 338
[50] Wang Q R, Yang L, Zhao N, Xu G Y, Song J Z, Jin X, Li X and Liu S H 2023 Appl. Therm. Eng. 219 119476
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[7] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[8] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[9] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[10] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[11] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[12] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[13] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[14] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[15] High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星). Chin. Phys. B, 2014, 23(2): 027303.
No Suggested Reading articles found!