Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030304    DOI: 10.1088/1674-1056/ada548
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

A pure quantum secret sharing scheme based on GHZ basis measurement and quantum entanglement exchange

Bai Liu(刘白)†, Jun Zhang(张俊), Shupin Qiu(邱书品), and Mingwu Zhang(张明武)
School of Computer Science, Hubei University of Technology, Wuhan 430068, China
Abstract  At present, most quantum secret sharing (QSS) protocols are more or less designed with the incorporation of classical secret sharing schemes. With the increasing maturity of quantum technology, QSS protocols based on pure quantum mechanics are becoming more important. Classical secret sharing schemes cannot achieve absolute security, and their involvement can compromise the security of QSS protocols. This paper proposes a QSS scheme based on Greenberger-Horn-Zeilinger (GHZ) basis measurement and quantum entanglement exchange. In this protocol, the secret sender stores the secret information using Pauli operations. Participants obtain their shares by measuring the product state sequentially. Finally, participants complete the secret reconstruction through quantum entanglement exchange and other related quantum operations. In addition, the particles held by participants in the protocol do not contain any secret information. Each participant's particles are in a state of maximum entanglement, and no participant can deduce the particle information of other participants through their own particles. At the same time, the protocol is based on pure quantum mechanics and does not involve classical schemes, which avoids the problem of reduced security of the protocol. Security analysis indicates that the protocol is not vulnerable to retransmission interception and collusion attacks. Moreover, it is capable of detecting and terminating the protocol promptly when facing with attacks from dishonest participants.
Keywords:  quantum secret sharing      projection measurement      quantum entanglement exchange      threshold  
Received:  28 June 2024      Revised:  21 December 2024      Accepted manuscript online:  03 January 2025
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62002105) and the Key Research and Development Program of Hubei, China (Grant No. 2021BEA163).
Corresponding Authors:  Bai Liu     E-mail:  liubai@hbut.edu.cn

Cite this article: 

Bai Liu(刘白), Jun Zhang(张俊), Shupin Qiu(邱书品), and Mingwu Zhang(张明武) A pure quantum secret sharing scheme based on GHZ basis measurement and quantum entanglement exchange 2025 Chin. Phys. B 34 030304

[1] Liu B X, Jiang D H, Liang X Q and Zhang Y H 2021 International Journal of Theoretical Physics 60 1339
[2] Zhang T, Xin X, Jiang B, Li C and Li F 2024 Optical and Quantum Electronics 56 131
[3] Gheorghiu A, Kapourniotis T and Kashefi E 2019 Theory of Computing Systems 63 715
[4] Shamir A 1979 Communications of the ACM 22 612
[5] Wan S, Qi L, Yang G, Lu Y, Yan X and Li L 2020 Multimedia Tools and Applications 79 2789
[6] Tan L, Lu Y, Yan X, Liu L and Li L 2019 IEEE Access 7 59278
[7] Zhang J and Zhang F 2015 Future Generation Computer Systems 52 109
[8] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[9] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[10] Giorgi L G 2005 Phys. Rev. A 71 064303
[11] Gao G 2024 Chin. Phys. B 33 40301
[12] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[13] Chou Y H, Chen C Y, Fan R K, Chao H C and Lin F J 2012 IET Information Security 6 84
[14] Basak N, Das N, Paul G, Nandi K and Patel N 2023 Quantum Inform. Proc. 22 393
[15] Hillery M 1999 Phys. Rev. A 59 1829
[16] Yan C, Li Z, Liu L and Lu D 2022 Quantum Inform. Proc. 21 24
[17] Lu C, Miao F, Hou J, Huang W and Xiong Y 2020 Quantum Inform. Proc. 19 101
[18] Sutradhar K and Om H 2020 QQuantum Inform. Proc. 19 73
[19] Yang W, Huang L, Shi R and He L 2013 Quantum Inform. Proc. 12 2465
[20] Qin H and Dai Y 2016 Information Processing Letters 116 351
[21] Hu W, Xiong B and Zhou R 2023 Chin. Phys. B 32 080303
[22] Song X L, Liu Y B, Deng H Y and Xiao Y G 2017 Scientific Reports 7 6366
[23] Mashhadi S 2022 Journal of Applied Security Research 17 123
[24] Mashhadi, Samaneh 2019 Quantum Inform. Proc. 18 114
[25] Xu Y, Li Z, Liu T and Zhu H 2022 International Journal of Theoretical Physics 61 76
[26] Musanna F and Kumar S 2020 Quantum Inform. Proc. 19 348
[27] Musanna, Farhan and Kumar, Sanjeev 2022 International Journal of Theoretical Physics 61 255
[28] Kuo S Y, Tseng K C, Yang C C and Chou Y H 2023 EPJ Quantum Technology 10 29
[1] An adjustment-free laser resonator based on micron-scale corner cube array
Pengyuan Chang(常鹏媛), Xinrong Huang(黄欣荣), Caolei Fu(傅曹雷), Aiping Liu(刘爱萍), Duo Pan(潘多), Zhiyang Wang(王志洋), and Jingbiao Chen(陈景标). Chin. Phys. B, 2025, 34(3): 034201.
[2] Excitation threshold of solitons in anharmonic chains
Yi Ming(明燚). Chin. Phys. B, 2025, 34(2): 020501.
[3] Triadic percolation in computer virus spreading dynamics
Jie Gao(高杰), Jianfeng Luo(罗建锋), Xing Li(李星), Yihong Li(李毅红), Zunguang Guo(郭尊光), and Xiaofeng Luo(罗晓峰). Chin. Phys. B, 2025, 34(2): 028701.
[4] CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
Chen Dong(董晨), Gui-Qiong Xu(徐桂琼), and Lei Meng(孟蕾). Chin. Phys. B, 2024, 33(8): 088901.
[5] Verifiable quantum secret sharing scheme based on orthogonal product states
Chen-Ming Bai(白晨明), Lu Liu(刘璐), and Sujuan Zhang(张素娟). Chin. Phys. B, 2024, 33(7): 070302.
[6] Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme
Huan-Yao Jiang(姜欢窈), Min Nie(聂敏), Guang Yang(杨光), Ai-Jing Sun(孙爱晶), Mei-Ling Zhang(张美玲), and Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2024, 33(7): 070303.
[7] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[8] Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields
Fa-Cheng Jin(金发成), Hui-Hui Yang(杨慧慧), Xiao-Hong Song(宋晓红), Fei Li(李飞), Ling-Ling Du(杜玲玲), Hong-Jie Xue(薛红杰), Li-Min Wei(魏丽敏), Yue Bai(白悦), Hao-Xiang Liu(刘浩翔), Bing-Bing Wang(王兵兵), and Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2024, 33(4): 043301.
[9] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[10] Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments
Zechao Lu(卢泽超), Shengmei Zhao(赵生妹), Huazhong Shu(束华中), and Long-Yan Gong(巩龙延). Chin. Phys. B, 2024, 33(2): 028707.
[11] Back-side stress to ease p-MOSFET degradation on e-MRAM chips
Zhi-Meng Yu(于志猛), Xiao-Lei Yang(杨晓蕾), Xiao-Nan Zhao(赵晓楠), Yan-Jie Li(李艳杰), Shi-Kun He(何世坤), and Ye-Wu Wang(王业伍). Chin. Phys. B, 2024, 33(12): 128503.
[12] Bifurcations for counterintuitive post-inhibitory rebound spike related to absence epilepsy and Parkinson disease
Xian-Jun Wang(王宪军), Hua-Guang Gu(古华光), Yan-Bing Jia(贾雁兵), Bo Lu(陆博), and Hui Zhou(周辉). Chin. Phys. B, 2023, 32(9): 090502.
[13] Improved quantum (t,n) threshold group signature
Yaodong Zhang(张耀东), Feng Liu(刘锋), and Haixin Zuo(左海新). Chin. Phys. B, 2023, 32(9): 090308.
[14] An efficient multiparty quantum secret sharing scheme using a single qudit
Wenwen Hu(胡文文), Bangshu Xiong(熊邦书), and Rigui Zhou(周日贵). Chin. Phys. B, 2023, 32(8): 080303.
[15] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
No Suggested Reading articles found!