|
|
Excitation threshold of solitons in anharmonic chains |
Yi Ming(明燚)† |
School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract This study numerically estimates the momentum threshold required to excite solitons in anharmonic chains. For both Fermi-Pasta-Ulam-Tsingou (FPUT)-$\alpha\beta$ and FPUT-$\beta$ chains, regardless of whether the interatomic interaction potential is symmetric, the required excitation momentum converges to the momentum of the soliton center (i.e., the peak momentum of the soliton) as the number of initially excited atoms increases. As the amplitude of the soliton approaches zero, the momentum threshold decreases to nearly zero, allowing soliton being excited with infinitesimal initial excitation momentum. These findings enhance the understanding of soliton dynamics and offer insights for optimizing soliton excitation methods, with potential applications in straintronics and nonlinear wave control technologies.
|
Received: 11 September 2024
Revised: 03 December 2024
Accepted manuscript online: 17 December 2024
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
63.20.Ry
|
(Anharmonic lattice modes)
|
|
Corresponding Authors:
Yi Ming
E-mail: yiming@ahu.edu.cn
|
Cite this article:
Yi Ming(明燚) Excitation threshold of solitons in anharmonic chains 2025 Chin. Phys. B 34 020501
|
[1] Dauxois T and Peyrard M 2006 Physics of solitons (Cambridge, UK: Cambridge University Press) [2] Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247 [3] Friesecke G and Wattis J A D 1994 Commun. Math. Phys. 161 391 [4] Friesecke G and Pego R L 1999 Nonlinearity 12 1601 [5] Friesecke G and Matthies K 2002 Physica D 171 211 [6] Smets D and Willem M 1997 J. Funct. Anal. 149 266 [7] Iooss G 2000 Nonlinearity 13 849 [8] Astakhova T Y, Gurin O D, Menon M and Vinogradov G A 2001 Phys. Rev. B 64 035418 [9] Astakhova T Y, Menon M and Vinogradov G A 2004 Phys. Rev. B 70 125409 [10] Wang J and Chen J 2020 Phys. Rev. E 101 042207 [11] Wang Y and Chen J 2021 Phys. Rev. B 104 224306 [12] Jiang P, Li N and Chen J 2022 Phys. Lett. A 451 128409 [13] Zavt G S, Wagner M and Lütze A 1993 Phys. Rev. E 47 4108 [14] Jin T, Yu J, Zhang N and Zhao H 2017 Phys. Rev. E 96 022116 [15] Jin T, Zhao H and Hu B 2010 Phys. Rev. E 81 037601 [16] Hu B, Li B and Zhao H 2000 Phys. Rev. E 61 3828 [17] Zhao H,Wen Z, Zhang Y and Zheng D 2005 Phys. Rev. Lett. 94 025507 [18] Zhao H 2006 Phys. Rev. Lett. 96 140602 [19] Ming Y, Ye L, Ling D B, Chen H S, Li H M and Ding Z J 2018 Phys. Rev. E 98 032215 [20] Ming Y, Hu H, Li H M, Ding Z J and Ren J 2023 Phys. Rev. E 107 014204 [21] Peyrard M, Pnevmatikos S and Flytzanis N 1986 Physica D 19 268 [22] Flytzanis N, Pnevmatikos S and Peyrard M 1989 J. Phys. A 22 783 [23] Kosevich Y A 1993 Phys. Rev. Lett. 71 2058 [24] Kosevich Y A 1993 Phys. Rev. Lett. 71 2058 [25] Archilla J F R, Kosevich Y A, Jiménez N, Sánchez-Morcillo V J and García-Raffi L M 2015 Phys. Rev. E 91 022912 [26] Szeftel J, Laurent-Gengoux P and Ilisca E 1999 Phys. Rev. Lett. 83 3982 [27] Szeftel J, Laurent-Gengoux P, Ilisca E and Hebbache M 2000 Physica A 288 225 [28] Neogi S and Mahan G D 2008 Phys. Rev. B 78 064306 [29] Truskinovsky L and Vainchtein A 2014 Phys. Rev. E 90 042903 [30] Savin A V and Kivshar Y S 2017 Phys. Rev. B 96 064307 [31] Savin A V and Dmitriev S V 2023 Phys. Rev. E 107 054216 [32] Germann T C, Holian B L, Lomdahl P S and Ravelo R 2000 Phys. Rev. Lett. 84 5351 [33] Kadau K, Germann T C, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120 [34] Roth J 2005 Phys. Rev. B 72 014126 [35] Ravelo R, Germann T C, Guerrero O, An Q and Holian B L 2013 Phys. Rev. B 88 134101 [36] Zhao K, Li Y and Zhao F 2022 Comput. Mater. Sci. 209 111406 [37] Thürmer D, Luu H T and Merkert N 2024 J. Appl. Phys. 135 155901 [38] Wen Z Y and Zhao H 2005 Chin. Phys. Lett. 22 1340 [39] Wen Z Y, Zhao H, Wang S J and Zhang X M 2006 Chin. Phys. Lett. 23 2034 [40] Hao H Y and Maris H J 2001 Phys. Rev. B 64 064302 [41] Muskens O L and Dijkhuis J I 2004 Phys. Rev. B 70 104301 [42] Moss D M, Akimov A V, Glavin B A, Henini M and Kent A J 2011 Phys. Rev. Lett. 106 066602 [43] Péronne E, Chuecos N, Thevenard L and Perrin B 2017 Phys. Rev. B 95 064306 [44] Lomonosov A M, Hess P and Mayer A P 2002 Phys. Rev. Lett. 88 076104 [45] Lomonosov A M, Hess P, Kumon R E and Hamilton M F 2004 Phys. Rev. B 69 035314 [46] Lomonosov A M, Pupyrev P D, Hess P and Mayer A P 2015 Phys. Rev. B 92 014112 [47] Muskens O L and Dijkhuis J I 2002 Phys. Rev. Lett. 89 285504 [48] Muskens O L, Akimov A V and Dijkhuis J I 2004 Phys. Rev. Lett. 92 035503 [49] Singhsomroje W and Maris H J 2004 Phys. Rev. B 69 174303 [50] van Capel P J S and Dijkhuis J I 2010 Phys. Rev. B 81 144106 [51] van Capel P J S and Dijkhuis J I 2006 Appl. Phys. Lett. 88 151910 [52] Daly B C, Norris T B, Chen J and Khurgin J B 2004 Phys. Rev. B 70 214307 [53] Deschamps J, Kai Y, Lem J, Chaban I, Lomonosov A, Anane A, Kooi S E, Nelson K A and Pezeril T 2023 Phys. Rev. Appl. 20 044044 [54] Fillipov A, Hu B, Li B and Zeltser A 1998 J. Phys. A 31 7719 [55] Theodorakopoulos N and Peyrard M 1999 Phys. Rev. Lett. 83 2293 [56] Zhang F, Isbister D J and Evans D J 2000 Phys. Rev. E 61 3541 [57] Li B, Wang J, Wang L and Zhang G 2005 Chaos 15 015121 [58] Aoki K and Kusnezov D 2001 Phys. Rev. Lett. 86 4029 [59] Ming Y, Ye L, Chen H S, Mao S F, Li H M and Ding Z J 2018 Phys. Rev. E 97 012221 [60] Bandyopadhyay S, Atulasimha J and Barman A 2021 Appl. Phys. Rev. 8 041323 [61] Bukharaev A A, Zvezdin A K, Pyatakov A P and Fetisov Y K 2018 Phys.-Usp. 61 1175 [62] Kim J W, Vomir M and Bigot J Y 2012 Phys. Rev. Lett. 109 166601 [63] Vlasov V S, Lomonosov A M, Golov A V, Kotov L N, Besse V, Alekhin A, Kuzmin D A, Bychkov I V and Temnov V V 2020 Phys. Rev. B 101 024425 [64] Scherbakov A V, van Capel P J S, Akimov A V, Dijkhuis J I, Yakovlev D R, Berstermann T and Bayer M 2007 Phys. Rev. Lett. 99 057402 [65] Stupakiewicz A, Szerenos K, Afanasiev D, Kirilyuk A and Kimel A 2016 Nature 542 71 [66] Stupakiewicz A, Davies C, Szerenos K, Afanasiev D, Rabinovich K, Boris A, Caviglia A, Kimel A and Kirilyuk A 2021 Nat. Phys. 17 489 [67] Young E S K, Akimov A V, Henini M, Eaves L and Kent A J 2012 Phys. Rev. Lett. 108 226601 [68] Berstermann T, Brüggemann C, Akimov A V, Bombeck M, Yakovlev D R, Gippius N A, Scherbakov A V, Sagnes I, Bloch J and Bayer M 2012 Phys. Rev. B 86 195306 [69] Casiraghi A, Walker P, Akimov A V, Edmonds K W, Rushforth A W, De Ranieri E, Campion R P, Gallagher B L and Kent A J 2011 Appl. Phys. Lett. 99 262503 [70] Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Böhnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M and Schumacher H W 2018 Appl. Phys. Lett. 113 072403 [71] Bombeck M, Salasyuk A S, Glavin B A, Scherbakov A V, Brüggemann C, Yakovlev D R, Sapega V F, Liu X, Furdyna J K, Akimov A V and Bayer M 2012 Phys. Rev. B 85 195324 [72] Bombeck M, Jäger J V, Scherbakov A V, Linnik T, Yakovlev D R, Liu X, Furdyna J K, Akimov A V and Bayer M 2013 Phys. Rev. B 87 060302 [73] Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K and Bayer M 2010 Phys. Rev. Lett. 105 117204 [74] Kovalenko O, Pezeril T and Temnov V V 2013 Phys. Rev. Lett. 110 266602 [75] Alekhin A, Lomonosov A M, Leo N, Ludwig M, Vlasov V S, Kotov L, Leitenstorfer A, Gaal P, Vavassori P and Temnov V 2023 Nano Lett. 23 9295 [76] Temnov V V 2012 Nat. Photon. 6 728 [77] Mogunov I A, Fernández F, Lysenko S, Kent A, Scherbakov A, Kalashnikova A and Akimov A 2019 Phys. Rev. Appl. 11 014054 [78] Temnov V, Klieber C, Nelson K, Thomay T, Knittel V, Leitenstorfer A, Makarov D, Albrecht M and Bratschitsch R 2013 Nat. Commun. 4 1468 [79] Burrage K, Lenane I and Lythe G 2007 SIAM J. Sci. Comput. 29 245 [80] Ming Y, Li H M and Ding Z J 2016 Phys. Rev. E 93 032127 [81] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77: the art of scientific computing (New York: Cambridge University Press) [82] Mendl C B and Spohn H 2013 Phys. Rev. Lett. 111 230601 [83] Spohn H 2014 J. Stat. Phys. 154 1191 [84] Das S G, Dhar A, Saito K, Mendl C B and Spohn H 2014 Phys. Rev. E 90 012124 [85] Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A and McEuen P L 2013 Proc. Natl. Acad. Sci. USA 110 11256 [86] Butz B, Dolle C, Niekiel F,Weber K,Waldmann D,Weber H B, Meyer B and Spiecker E 2014 Nature 505 533 [87] Barré E, Dandu M, Kundu S, Sood A, da Jornada F and Raja A 2024 Nat. Rev. Mater. 9 499 [88] Han Y, Zhou J, Wang H, Gao L, Feng S, Cao K, Xu Z and Lu Y 2021 Appl. Nanosci. 11 1075 [89] Chen J, Chen S and Gao Y 2017 Phys. Rev. B 95 134301 [90] Chen J, Qi W, Zhang M and Zhao H 2015 J. Stat. Mech. 2015 P06007 [91] Shepelev I A, Kolesnikov I D, Korznikova E A and Dmitriev S V 2023 Physica E 146 115519 [92] Feng S and Xu Z 2021 Nano Lett. 21 1772 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|