Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020501    DOI: 10.1088/1674-1056/ad9ff6
GENERAL Prev   Next  

Excitation threshold of solitons in anharmonic chains

Yi Ming(明燚)†
School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract  This study numerically estimates the momentum threshold required to excite solitons in anharmonic chains. For both Fermi-Pasta-Ulam-Tsingou (FPUT)-$\alpha\beta$ and FPUT-$\beta$ chains, regardless of whether the interatomic interaction potential is symmetric, the required excitation momentum converges to the momentum of the soliton center (i.e., the peak momentum of the soliton) as the number of initially excited atoms increases. As the amplitude of the soliton approaches zero, the momentum threshold decreases to nearly zero, allowing soliton being excited with infinitesimal initial excitation momentum. These findings enhance the understanding of soliton dynamics and offer insights for optimizing soliton excitation methods, with potential applications in straintronics and nonlinear wave control technologies.
Keywords:  solitons      Fermi-Pasta-Ulam-Tsingou chains      excitation threshold  
Received:  11 September 2024      Revised:  03 December 2024      Accepted manuscript online:  17 December 2024
PACS:  05.45.Yv (Solitons)  
  63.20.Ry (Anharmonic lattice modes)  
Corresponding Authors:  Yi Ming     E-mail:  yiming@ahu.edu.cn

Cite this article: 

Yi Ming(明燚) Excitation threshold of solitons in anharmonic chains 2025 Chin. Phys. B 34 020501

[1] Dauxois T and Peyrard M 2006 Physics of solitons (Cambridge, UK: Cambridge University Press)
[2] Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[3] Friesecke G and Wattis J A D 1994 Commun. Math. Phys. 161 391
[4] Friesecke G and Pego R L 1999 Nonlinearity 12 1601
[5] Friesecke G and Matthies K 2002 Physica D 171 211
[6] Smets D and Willem M 1997 J. Funct. Anal. 149 266
[7] Iooss G 2000 Nonlinearity 13 849
[8] Astakhova T Y, Gurin O D, Menon M and Vinogradov G A 2001 Phys. Rev. B 64 035418
[9] Astakhova T Y, Menon M and Vinogradov G A 2004 Phys. Rev. B 70 125409
[10] Wang J and Chen J 2020 Phys. Rev. E 101 042207
[11] Wang Y and Chen J 2021 Phys. Rev. B 104 224306
[12] Jiang P, Li N and Chen J 2022 Phys. Lett. A 451 128409
[13] Zavt G S, Wagner M and Lütze A 1993 Phys. Rev. E 47 4108
[14] Jin T, Yu J, Zhang N and Zhao H 2017 Phys. Rev. E 96 022116
[15] Jin T, Zhao H and Hu B 2010 Phys. Rev. E 81 037601
[16] Hu B, Li B and Zhao H 2000 Phys. Rev. E 61 3828
[17] Zhao H,Wen Z, Zhang Y and Zheng D 2005 Phys. Rev. Lett. 94 025507
[18] Zhao H 2006 Phys. Rev. Lett. 96 140602
[19] Ming Y, Ye L, Ling D B, Chen H S, Li H M and Ding Z J 2018 Phys. Rev. E 98 032215
[20] Ming Y, Hu H, Li H M, Ding Z J and Ren J 2023 Phys. Rev. E 107 014204
[21] Peyrard M, Pnevmatikos S and Flytzanis N 1986 Physica D 19 268
[22] Flytzanis N, Pnevmatikos S and Peyrard M 1989 J. Phys. A 22 783
[23] Kosevich Y A 1993 Phys. Rev. Lett. 71 2058
[24] Kosevich Y A 1993 Phys. Rev. Lett. 71 2058
[25] Archilla J F R, Kosevich Y A, Jiménez N, Sánchez-Morcillo V J and García-Raffi L M 2015 Phys. Rev. E 91 022912
[26] Szeftel J, Laurent-Gengoux P and Ilisca E 1999 Phys. Rev. Lett. 83 3982
[27] Szeftel J, Laurent-Gengoux P, Ilisca E and Hebbache M 2000 Physica A 288 225
[28] Neogi S and Mahan G D 2008 Phys. Rev. B 78 064306
[29] Truskinovsky L and Vainchtein A 2014 Phys. Rev. E 90 042903
[30] Savin A V and Kivshar Y S 2017 Phys. Rev. B 96 064307
[31] Savin A V and Dmitriev S V 2023 Phys. Rev. E 107 054216
[32] Germann T C, Holian B L, Lomdahl P S and Ravelo R 2000 Phys. Rev. Lett. 84 5351
[33] Kadau K, Germann T C, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120
[34] Roth J 2005 Phys. Rev. B 72 014126
[35] Ravelo R, Germann T C, Guerrero O, An Q and Holian B L 2013 Phys. Rev. B 88 134101
[36] Zhao K, Li Y and Zhao F 2022 Comput. Mater. Sci. 209 111406
[37] Thürmer D, Luu H T and Merkert N 2024 J. Appl. Phys. 135 155901
[38] Wen Z Y and Zhao H 2005 Chin. Phys. Lett. 22 1340
[39] Wen Z Y, Zhao H, Wang S J and Zhang X M 2006 Chin. Phys. Lett. 23 2034
[40] Hao H Y and Maris H J 2001 Phys. Rev. B 64 064302
[41] Muskens O L and Dijkhuis J I 2004 Phys. Rev. B 70 104301
[42] Moss D M, Akimov A V, Glavin B A, Henini M and Kent A J 2011 Phys. Rev. Lett. 106 066602
[43] Péronne E, Chuecos N, Thevenard L and Perrin B 2017 Phys. Rev. B 95 064306
[44] Lomonosov A M, Hess P and Mayer A P 2002 Phys. Rev. Lett. 88 076104
[45] Lomonosov A M, Hess P, Kumon R E and Hamilton M F 2004 Phys. Rev. B 69 035314
[46] Lomonosov A M, Pupyrev P D, Hess P and Mayer A P 2015 Phys. Rev. B 92 014112
[47] Muskens O L and Dijkhuis J I 2002 Phys. Rev. Lett. 89 285504
[48] Muskens O L, Akimov A V and Dijkhuis J I 2004 Phys. Rev. Lett. 92 035503
[49] Singhsomroje W and Maris H J 2004 Phys. Rev. B 69 174303
[50] van Capel P J S and Dijkhuis J I 2010 Phys. Rev. B 81 144106
[51] van Capel P J S and Dijkhuis J I 2006 Appl. Phys. Lett. 88 151910
[52] Daly B C, Norris T B, Chen J and Khurgin J B 2004 Phys. Rev. B 70 214307
[53] Deschamps J, Kai Y, Lem J, Chaban I, Lomonosov A, Anane A, Kooi S E, Nelson K A and Pezeril T 2023 Phys. Rev. Appl. 20 044044
[54] Fillipov A, Hu B, Li B and Zeltser A 1998 J. Phys. A 31 7719
[55] Theodorakopoulos N and Peyrard M 1999 Phys. Rev. Lett. 83 2293
[56] Zhang F, Isbister D J and Evans D J 2000 Phys. Rev. E 61 3541
[57] Li B, Wang J, Wang L and Zhang G 2005 Chaos 15 015121
[58] Aoki K and Kusnezov D 2001 Phys. Rev. Lett. 86 4029
[59] Ming Y, Ye L, Chen H S, Mao S F, Li H M and Ding Z J 2018 Phys. Rev. E 97 012221
[60] Bandyopadhyay S, Atulasimha J and Barman A 2021 Appl. Phys. Rev. 8 041323
[61] Bukharaev A A, Zvezdin A K, Pyatakov A P and Fetisov Y K 2018 Phys.-Usp. 61 1175
[62] Kim J W, Vomir M and Bigot J Y 2012 Phys. Rev. Lett. 109 166601
[63] Vlasov V S, Lomonosov A M, Golov A V, Kotov L N, Besse V, Alekhin A, Kuzmin D A, Bychkov I V and Temnov V V 2020 Phys. Rev. B 101 024425
[64] Scherbakov A V, van Capel P J S, Akimov A V, Dijkhuis J I, Yakovlev D R, Berstermann T and Bayer M 2007 Phys. Rev. Lett. 99 057402
[65] Stupakiewicz A, Szerenos K, Afanasiev D, Kirilyuk A and Kimel A 2016 Nature 542 71
[66] Stupakiewicz A, Davies C, Szerenos K, Afanasiev D, Rabinovich K, Boris A, Caviglia A, Kimel A and Kirilyuk A 2021 Nat. Phys. 17 489
[67] Young E S K, Akimov A V, Henini M, Eaves L and Kent A J 2012 Phys. Rev. Lett. 108 226601
[68] Berstermann T, Brüggemann C, Akimov A V, Bombeck M, Yakovlev D R, Gippius N A, Scherbakov A V, Sagnes I, Bloch J and Bayer M 2012 Phys. Rev. B 86 195306
[69] Casiraghi A, Walker P, Akimov A V, Edmonds K W, Rushforth A W, De Ranieri E, Campion R P, Gallagher B L and Kent A J 2011 Appl. Phys. Lett. 99 262503
[70] Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Böhnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M and Schumacher H W 2018 Appl. Phys. Lett. 113 072403
[71] Bombeck M, Salasyuk A S, Glavin B A, Scherbakov A V, Brüggemann C, Yakovlev D R, Sapega V F, Liu X, Furdyna J K, Akimov A V and Bayer M 2012 Phys. Rev. B 85 195324
[72] Bombeck M, Jäger J V, Scherbakov A V, Linnik T, Yakovlev D R, Liu X, Furdyna J K, Akimov A V and Bayer M 2013 Phys. Rev. B 87 060302
[73] Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K and Bayer M 2010 Phys. Rev. Lett. 105 117204
[74] Kovalenko O, Pezeril T and Temnov V V 2013 Phys. Rev. Lett. 110 266602
[75] Alekhin A, Lomonosov A M, Leo N, Ludwig M, Vlasov V S, Kotov L, Leitenstorfer A, Gaal P, Vavassori P and Temnov V 2023 Nano Lett. 23 9295
[76] Temnov V V 2012 Nat. Photon. 6 728
[77] Mogunov I A, Fernández F, Lysenko S, Kent A, Scherbakov A, Kalashnikova A and Akimov A 2019 Phys. Rev. Appl. 11 014054
[78] Temnov V, Klieber C, Nelson K, Thomay T, Knittel V, Leitenstorfer A, Makarov D, Albrecht M and Bratschitsch R 2013 Nat. Commun. 4 1468
[79] Burrage K, Lenane I and Lythe G 2007 SIAM J. Sci. Comput. 29 245
[80] Ming Y, Li H M and Ding Z J 2016 Phys. Rev. E 93 032127
[81] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77: the art of scientific computing (New York: Cambridge University Press)
[82] Mendl C B and Spohn H 2013 Phys. Rev. Lett. 111 230601
[83] Spohn H 2014 J. Stat. Phys. 154 1191
[84] Das S G, Dhar A, Saito K, Mendl C B and Spohn H 2014 Phys. Rev. E 90 012124
[85] Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A and McEuen P L 2013 Proc. Natl. Acad. Sci. USA 110 11256
[86] Butz B, Dolle C, Niekiel F,Weber K,Waldmann D,Weber H B, Meyer B and Spiecker E 2014 Nature 505 533
[87] Barré E, Dandu M, Kundu S, Sood A, da Jornada F and Raja A 2024 Nat. Rev. Mater. 9 499
[88] Han Y, Zhou J, Wang H, Gao L, Feng S, Cao K, Xu Z and Lu Y 2021 Appl. Nanosci. 11 1075
[89] Chen J, Chen S and Gao Y 2017 Phys. Rev. B 95 134301
[90] Chen J, Qi W, Zhang M and Zhao H 2015 J. Stat. Mech. 2015 P06007
[91] Shepelev I A, Kolesnikov I D, Korznikova E A and Dmitriev S V 2023 Physica E 146 115519
[92] Feng S and Xu Z 2021 Nano Lett. 21 1772
[1] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华). Chin. Phys. B, 2025, 34(1): 010201.
[2] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[3] Effective regulation of the interaction process among three optical solitons
Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2024, 33(10): 100502.
[4] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[5] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[6] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[7] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[8] High-order effect on the transmission of two optical solitons
Houhui Yi(伊厚会), Yanli Yao(姚延立), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2023, 32(10): 100509.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[11] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[12] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[13] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[14] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[15] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
No Suggested Reading articles found!