Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024207    DOI: 10.1088/1674-1056/adf69d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-frequency non-reciprocal optical directional amplifier realized with non-Hermitian resonator arrays

Jin-Xiang Xue(薛金香)1, Chuan-Xun Du(杜传勋)1,3,†, Cheng-Chao Liu(刘成超)1, Liu Yang(杨柳)1, and Yong-Long Wang(王永龙)1,2,3,‡
1 School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China;
2 Department of Physics, Nanjing University, Nanjing 210093, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  For a multi-frequency non-reciprocal optical device, we first realize multi-frequency optical non-reciprocal transmission using a non-Hermitian multi-mode resonator array. Practically, multi-frequency operation can add channels to the non-reciprocal optical device and the non-reciprocity can route optical signals and prevent the reverse flow of noise. Using the Scully-Lamb model and gain saturation effect, we accomplish dual-frequency non-reciprocal transmission by introducing nonlinearity into a linear array of four-mode resonators. The accomplishment is directly demonstrated by the non-reciprocal transmission phenomena present in the non-divergent peaks. For example, a directional cyclic amplifier is constructed with non-reciprocal units. Regarding potential applications, non-reciprocal optical systems can be employed in dual-frequency control, parallel information processing, photonic integrated circuits, optical devices and so on.
Keywords:  non-Hermitian systems      $\mathcal{PT}$-symmetry      multi-frequency of non-reciprocity      optical directional amplifier  
Received:  14 April 2025      Revised:  30 July 2025      Accepted manuscript online:  01 August 2025
PACS:  42.65.-k (Nonlinear optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: This work is jointly supported by the National Nature Science Foundation of China (Grant Nos. 12475019 and 12073056), the Major National Science and Technology Project of China (Grant No. BX2024B054), National Lab of Solid State Microstructure of Nanjing University (Grant Nos. M35040, M35053, and M37014), and the Natural Science Foundation of Shandong Province (Grant No. ZR2024MA038).
Corresponding Authors:  Chuan-Xun Du, Yong-Long Wang     E-mail:  duchuanxun@lyu.edu.cn;wangyonglong@lyu.edu.cn

Cite this article: 

Jin-Xiang Xue(薛金香), Chuan-Xun Du(杜传勋), Cheng-Chao Liu(刘成超), Liu Yang(杨柳), and Yong-Long Wang(王永龙) Multi-frequency non-reciprocal optical directional amplifier realized with non-Hermitian resonator arrays 2026 Chin. Phys. B 35 024207

[1] Meng H, Ang Y S and Lee C H 2024 Appl. Phys. Lett. 124 060502
[2] Yan Q, Zhao B, Zhou R, Ma R, Lyu Q, Chu S, Hu X and Gong Q 2023 Nanophotonics 12 2247
[3] Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L and Dong C H 2018 Nat. Commun. 9 1
[4] Andreas R, Miguel A S, Anthony K and Muga J G 2021 J. Phys. Conf. Ser. 2038 012020
[5] Arkhipov I I, Miranowicz A, Di Stefano O, Stassi R, Savasta S, Nori F and Ö zdemir K 2019 Phys. Rev. A 99 053806
[6] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photonics 8 524
[7] Potton R J 2004 Rep. Prog. Phys. 67 717
[8] Shen Z, Zhang Y L, Chen Y, Xiao Y F, Zou C L, Guo G C and Dong C H 2023 Phys. Rev. Lett. 130 013601
[9] Kutsaev S V, Krasnok A, Romanenko S N, Smirnov A Y, Taletski K and Yakovlev V P 2021 Adv. Photonics Res. 2 2000104
[10] Bromberg Y, Redding B, Popoff S M and Cao H 2016 Phys. Rev. A 93 023826
[11] Zheng J C and Li P B 2023 Opt. Express 31 21881
[12] Fan Z, Zhang W, Qiu Q and Yao J 2020 J. Lightwave Technol. 38 2127
[13] Mock A 2022 Opt. Express 30 39207
[14] Cheng S, Shen H Z and Yi X X 2019 Opt. Express 27 25882
[15] Tang L, Tang J, Chen M, Nori F, Xiao M and Xia K 2022 Phys. Rev. Lett. 128 083604
[16] Yao Y and Ai Q 2023 Ann. Phys. 535 2300135
[17] Burgwal R and Verhagen E 2023 Nat. Commun. 14 1526
[18] Cao W, Wang C, Chen W, Hu S, Wang H, Yang L and Zhang X 2022 Nat. Nanotechnol. 17 262
[19] Liao M J, Wei M S, Wang S, Xu J and Yang Y 2024 Chin. Phys. B 33 060305
[20] Yi Y 2024 Chin. Phys. B 33 060302
[21] Metelmann A and Clerk A A 2017 Phys. Rev. A 95 013837
[22] Shoji Y and Mizumoto T 2016 Sci. Technol. Adv. Mater. 15 014602
[23] Yan W, Wei Z, Yang Y, Wu D, Zhang Z, Song X, Qin J and Bi L 2024 Optica 11 376
[24] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C and Zou C L 2021 Nat. Commun. 12 2389
[25] Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K and Deck-Léger Z L 2018 Phys. Rev. Appl 10 047001
[26] Caloz C and Deck-Léger Z L 2019 T-AP 68 1569
[27] Sounas D L and Alù A 2017 Nat. Photonics 11 774
[28] Fan S, Shi Y and Lin Q 2018 AWP Letters 17 1948
[29] Estep N A, Sounas D L, Soric J and Alù A 2014 Nat. Phys. 10 923
[30] Fang K, Yu Z and Fan S 2012 Nat. Photonics 6 782
[31] Tzuang L D, Fang K, Nussenzveig P, Fan S and Lipson M 2014 Nat. Photonics 8 701
[32] Lira H, Yu Z, Fan S and Lipson M 2012 Phys. Rev. Lett. 109 033901
[33] Fang K, Yu Z and Fan S 2012 Phys. Rev. Lett. 108 153901
[34] Fan L, Varghese L T, Xuan Y, Wang J, Niu B and Qi M 2012 Opt. Express 20 20564
[35] Guo X, Zou C L, Jung H and Tang H X 2016 Phys. Rev. Lett. 117 123902
[36] Lawrence M, Barton D R and Dionne J A 2018 Nano Lett. 18 1104
[37] Peterson G, Lecocq F, Cicak K, Simmonds R, Aumentado J and Teufel J 2017 Phys. Rev. X 7 031001
[38] Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B, Painter O and Fink J M 2017 Nat. Commun. 8 953
[39] Bernier N R, Tóth L D, Koottandavida A, Ioannou M A, Malz D, Nunnenkamp A, Feofanov A K and Kippenberg T J 2017 Nat. Commun. 8 604
[40] Mercier de Lépinay L, Ockeloen-Korppi C F, Malz D and Sillanpää M A 2020 Phys. Rev. Lett. 125 023603
[41] Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J and Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601
[42] Peng B, Özdemir K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[43] Du C, Chen Y T, Du L and Wu J H 2024 Phys. Lett. A 503 129413
[44] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C A 2011 Nat. Photonics 5 758
[45] Wu H, Tang J, Chen M, Xiao M, Lu Y, Xia K and Nori F 2024 Opt. Express 32 11010
[46] Shen J, Liu J, Lin M,Wu Z and Deng S 2023 Electron. Lett. 59 e212730
[47] Yamamoto Y and Imamoglu A 1999 Mesoscopic Quantum Optics (New York: John Wiley & Sons)
[48] Dong C, Yang Z, Zeng J and Hu J 2023 Chin. Phys. B 32 070305
[49] Cotrufo M, Cordaro A, Sounas D L, Polman A and Alù A 2023 Nat. Photonics 18 81
[50] Breit G and Wigner E 1936 Phys. Rev. 49 519
[1] Non-Hermitian mosaic Aubry-Andre-Harper model
Yingshixiang Wang(王应时翔), Dongze Song(宋东泽), and Xu Xia(夏旭). Chin. Phys. B, 2025, 34(9): 090201.
[2] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[3] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[4] Topological Anderson insulator in two-dimensional non-Hermitian systems
Hongfang Liu(刘宏芳), Zixian Su(苏子贤), Zhi-Qiang Zhang(张智强), Hua Jiang(江华). Chin. Phys. B, 2020, 29(5): 050502.
No Suggested Reading articles found!