Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106102    DOI: 10.1088/1674-1056/addd80
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Displacement damage effects on the p-GaN HEMT induced by neutrons at Back-n in the China Spallation Neutron Source

Yu-Fei Liu(刘宇飞)1, Li-Li Ding(丁李利)2, Yuan-Yuan Xue(薛院院)2,3, Shu-Xuan Zhang(张书瑄)1, Wei Chen(陈伟)2,†, and Yong-Tao Zhao(赵永涛)1,‡
1 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
2 National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi'an 710024, China;
3 State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  Irradiation experiments on p-GaN gate high-electron-mobility transistors (HEMTs) were conducted using neutrons at Back-streaming White Neutron (Back-n) facility at the China Spallation Neutron Source (CSNS). Two groups of devices were float-biased, while one group was ON-biased. Post-irradiation analysis revealed that the electrical performance of the devices exhibited progressive degradation with increasing Back-n fluence, with the ON-biased group demonstrating the most pronounced deterioration. This degradation was primarily characterized by a negative shift in the threshold voltage, a significant increase in reverse gate leakage current, and a slight reduction in forward gate leakage. Further analysis of the gate leakage current and capacitance-voltage characteristics indicated an elevated concentration of two-dimensional electron gas (2DEG), attributed to donor-type defects introduced within the barrier layer by Back-n irradiation. These defects act as hole traps, converting into fixed positive charges that deepen the quantum-well conduction band, thereby enhancing the 2DEG density. Additionally, through the trap-assisted tunneling mechanism, these defects serve as tunneling centers, increasing the probability of electron tunneling and consequently elevating the reverse gate leakage current.
Keywords:  displacement damage effects      HEMT      Back-n      CSNS      threshold voltage shift  
Received:  02 February 2025      Revised:  13 May 2025      Accepted manuscript online:  28 May 2025
PACS:  61.80.Hg (Neutron radiation effects)  
  71.55.Eq (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12120101005, U2030104, 12175174, 11975174, and 12105229), State Key Laboratory Foundation of Laser Interaction with Matter (Grant Nos. SKLLIM1807 and SKLLIM2106), the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20241372), and National Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. NKLIPR2419).
Corresponding Authors:  Wei Chen, Yong-Tao Zhao     E-mail:  chenwei@nint.ac.cn;zhaoyongtao@xjtu.edu.cn

Cite this article: 

Yu-Fei Liu(刘宇飞), Li-Li Ding(丁李利), Yuan-Yuan Xue(薛院院), Shu-Xuan Zhang(张书瑄), Wei Chen(陈伟), and Yong-Tao Zhao(赵永涛) Displacement damage effects on the p-GaN HEMT induced by neutrons at Back-n in the China Spallation Neutron Source 2025 Chin. Phys. B 34 106102

[1] Grant J, Cunningham W, Blue A, O’Shea V, Vaitkus J, Gaubas E and Rahman M 2005 Nucl. Instr. Meth. A 546 213
[2] Kozak J P, Zhang R, Porter M, Song Q, Liu J, Wang B, Wang R, Saito W and Zhang Y 2023 IEEE Trans. Power Electron. 38 8442
[3] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Elect. Materials 4 1600501
[4] Zhou X, Wang Z, Wu Z, Zhou Q, Qiao M, Li Z and Zhang B 2023 IEEE Trans. Electron Devices 70 4081
[5] Bonaldo S, Zhang E X, Mattiazzo S, Paccagnella A, Gerardin S, Schrimpf R D and Fleetwood D M 2023 IEEE Trans. Nucl. Sci. 70 2042
[6] Chen C, Tian B L, Liu X Z, Dai L P, Deng X W and Chen Y F 2012 Chin. Phys. B 21 078503
[7] Wang Y P, Luo Y H, Wang W, Zhang K Y, Guo H X, Guo X Q and Wang Y M 2013 Chin. Phys. C 37 056201
[8] Li Q, Lou H and Zhu L 2023 Appl. Phys. A 129 374
[9] Yue S, Lei Z, Peng C, Zhong X, Wang J, Zhang Z, En Y, Wang Y and Hu L 2020 IEEE Trans. Nucl. Sci. 67 1339
[10] Ives N E, Chen J,Witulski A F, Schrimpf R D, Fleetwood D M, Bruce R W, McCurdy M W, Zhang E X and Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2417
[11] Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J and Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344
[12] Fleetwood D M, Zhang E X, Schrimpf R D and Pantelides S T 2022 IEEE Trans. Nucl. Sci. 69 1105
[13] Berthet F, Petitdidier S, Guhel Y, Trolet J L, Mary P, Gaquiere C and Boudart B 2016 IEEE Trans. Nucl. Sci. 63 1918
[14] Zhang M L, Wang X L, Xiao H L, Wang C M, Ran J X and Hu G X 2008 Chin. Phys. Lett. 25 1045
[15] Polyakov A Y, Smirnov N B, Govorkov A V, Shlensky A A and Pearton S J 2004 J. Appl. Phys. 95 5591
[16] Ahmed M, Kucukgok B, Yanguas-Gil A, Hryn J and Wender S A 2020 Radiation Physics and Chemistry 166 108456
[17] Lv L, Yan X, Cao Y, Zhu Q, Yang L, Zhou X, Ma X and Hao Y 2019 IEEE Trans. Nucl. Sci. 66 886
[18] Wan X, et al. 2017 IEEE Trans. Nucl. Sci. 64 253
[19] Wu H, Fu X, Guo J, Liu T, Wang Y, Luo J, Huang Z and Hu S 2022 IEEE Electron Device Lett. 43 1945
[20] Lü L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104
[21] Bôas A C V, et al. 2024 2024 38th Symposium on Microelectronics Technology and Devices (SBMicro) Joao Pessoa, Brazil, 2024-09-02 pp. 1-4
[22] Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L and Luo Y H 2020 Acta Phys. Sin. 69 162901 (in Chinese)
[23] Tang X, Li B, Moghadam H A, Tanner P, Han J and Dimitrijev S 2018 IEEE Electron Device Lett. 39 1145
[24] Yue S, Wang Y, Zheng X, Pan A, Hong Y, Wang X, Gong S, Zhu T, Zhang F, Ma X and Hao Y 2024 Appl. Phys. Lett. 124 122105
[25] Arslan E, Bütün S, S? afak Y and Ozbay E 2010 J. Electron. Mater. 39 2681
[26] Aziz M A and El-Abd A 2006 Proceedings of the Twenty Third National Radio Science Conference (NRSC’2006) Menouf, Egypt, 2006 D6 1
[27] Rashmi, Kranti A, Haldar S and Gupta R S 2002 Solid-State Electronics 46 621
[28] Krantz R J and Bloss W L 1989 IEEE Trans. Electron Devices 36 451
[1] Gate leakage mechanisms in Al2O3/SiN/AlN/GaN MIS-HEMTs on Si substrates
Hui-Lin Li(李惠琳), Jie-Jie Zhu(祝杰杰), Ling-Jie Qin(秦灵洁), Si-Mei Huang(黄思美), Shi-Yang Li(李诗洋), Bo-Xuan Gao(高渤轩), Qing Zhu(朱青), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2025, 34(4): 047103.
[2] Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode
Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(9): 098506.
[3] Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source (CSNS)
Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黄畅), Qian Yu(于潜), Shao-Jia Chen(陈少佳), Xiu-Ku Wang(王修库), Hong Xu(许虹), Shi-Hui Zhou(周诗慧),Xiao-Jie Cai(蔡小杰), Hao Yang(杨浩), Zhi-Yong Wan(万志勇),Zhi-Jia Sun(孙志嘉), and Yun-Tao Liu(刘云涛). Chin. Phys. B, 2023, 32(9): 090402.
[4] Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source
Yuan-Yuan Xue(薛院院), Zu-Jun Wang(王祖军), Wei Chen(陈伟), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Bao-Ping He(何宝平), Xu Nie(聂栩), Shankun Lai(赖善坤), Gang Huang(黄港), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), and Shi-Long Gou(缑石龙). Chin. Phys. B, 2023, 32(7): 076101.
[5] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[6] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[7] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[8] Measurement of the relative neutron sensitivity curve of a LaBr3(Ce) scintillator based on the CSNS Back-n white neutron source
Jian Liu(刘建), Dongming Wang(王东明), Yuecheng Fu(甫跃成), Zhongbao Li(李忠宝), Han Yi(易晗), and Longtao Yi(易龙涛). Chin. Phys. B, 2023, 32(10): 100703.
[9] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[10] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[11] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[12] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[13] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[14] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[15] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
No Suggested Reading articles found!