Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090310    DOI: 10.1088/1674-1056/ad6a3c
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits

Hao-Ran Tao(陶浩然)1,2, Lei Du(杜磊)1,2, Liang-Liang Guo(郭亮亮)1,2, Yong Chen(陈勇)1,2, Hai-Feng Zhang(张海峰)1,2, Xiao-Yan Yang(杨小燕)1,2, Guo-Liang Xu(徐国良)3, Chi Zhang(张 驰)3, Zhi-Long Jia(贾志龙)3, Peng Duan(段鹏)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal-air interface, where Nb$_2$O$_5$ is considered the main loss source. Here, we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film. With TiN capping layers, no Nb$_2$O$_5$ forms on the surface of the Nb film. The quality factor $Q_{\rm i}$ of the Nb resonator increases from $5.6\times10^{5}$ to $7.9\times10^{5}$ at low input power and from $6.8\times10^{6}$ to $1.1\times10^{7}$ at high input power. Furthermore, the TiN capping layer also shows good aging resistance in Nb resonator devices, with no significant performance fluctuations after one month of aging. These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.
Keywords:  anti-aging      oxidation      dielectric loss      Nb superconducting quantum circuits  
Received:  18 June 2024      Revised:  29 July 2024      Accepted manuscript online:  02 August 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419).
Corresponding Authors:  Peng Duan, Guo-Ping Guo     E-mail:  pengduan@ustc.edu.cn;gpguo@ustc.edu.cn

Cite this article: 

Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平) In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits 2024 Chin. Phys. B 33 090310

[1] Murray C E 2021 Mater. Sci. Eng. R Reports 146 100646
[2] Pappas D P, Vissers M R, Wisbey D S, Kline J S and Gao J 2011 IEEE Trans. Appl. Supercond. 21 871
[3] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys. 109 063915
[4] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W and Yu C C 2005 Phys. Rev. Lett. 95 210503
[5] Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M and Ustinov A V 2019 npj Quantum Inf. 5 105
[6] Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S and Pappas D P 2012 Appl. Phys. Lett. 100 262605
[7] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim D K, Miloshi X, Rosenberg D, Sevi A, Yoder J L, Dauler E and Oliver W D 2018 Appl. Phys. Lett. 112 262605
[8] Wenner J, Barends R, Bialczak R C, Chen Y, Kelly J, Lucero E, Mariantoni M, Megrant A, O'Malley P J J, Sank D, Vainsencher A, Wang H, White T C, Yin Y, Zhao J, Cleland A N and Martinis J M 2011 Appl. Phys. Lett. 99 1
[9] Lahtinen V and Möttönen M 2020 J. Phys. Condens. Matter 32 405702
[10] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J and Devoret M H 2012 Appl. Phys. Lett. 100 1
[11] He H, Wang W, Liu F, Yuan B and Shan Z 2022 Entropy 24 952
[12] Eun S, Park S H, Seo K, Choi K and Hahn S 2023 J. Phys. D:Appl. Phys. 56 505306
[13] Deng H, Song Z, Gao R, Xia T, Bao F, Jiang X, Ku H S, Li Z, Ma X, Qin J, Sun H, Tang C, Wang T, Wu F, Yu W, Zhang G, Zhang X, Zhou J, Zhu X, Shi Y, Zhao H H and Deng C 2023 Phys. Rev. Appl. 19 024013
[14] Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J and Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1
[15] Mergenthaler M, Müller C, Ganzhorn M, Paredes S, Müller P, Salis G, Adiga V P, Brink M, Sandberg M, Hertzberg J B, Filipp S and Fuhrer A 2021 npj Quantum Inf. 7 157
[16] Wang C, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y and Yu H 2022 npj Quantum Inf. 8 3
[17] Zikiy E V, Ivanov A I, Smirnov N S, Moskalev D O, Polozov V I, Matanin A R, Malevannaya E I, Echeistov V V, Konstantinova T G and Rodionov I A 2023 Sci. Rep. 13 15536
[18] Kwon S, Fadavi Roudsari A, Benningshof O W B, Tang Y C, Mohebbi H R, Taminiau I A J, Langenberg D, Lee S, Nichols G, Cory D G and Miao G X 2018 J. Appl. Phys. 124 033903
[19] Dominjon A, Shu S, Kroug M, Noguchi T, Sekimoto Y, Shan W, Sekiguchi S and Nitta T 2019 J. Low Temp. Phys. 194 404
[20] Bruno A, Mengucci P, Mercaldo L V and Lisitskiy M P 2013 Supercond. Sci. Technol. 26 035004
[21] Annunziata A J, Santavicca D F, Frunzio L, Catelani G, Rooks M J, Frydman A and Prober D E 2010 Nanotechnology 21 445202
[22] Altoé M V P, Banerjee A, Berk C, Hajr A, Schwartzberg A, Song C, Ghadeer M A, Aloni S, Elowson M J, Kreikebaum J M, Wong E K, Griffin S, Rao S, Weber-Bargioni A, Minor A M, Santiago D I, Cabrini S, Siddiqi I and Ogletree D F 2020 arXiv:2012.07604
[23] Hu Z W and Qiu X G 2023 Chin. Phys. B 32 037401
[24] Liu B L, Liu D, Yao M, Jin J D, Wang Z, Li J, Shi S C, Chekushkin A, Fominsky M, Filippenko L and Koshelets V 2024 Chin. Phys. B 33 058501
[25] Sebastian J, Seidman D, Yoon K, Bauer P, Reid T, Boffo C and Norem J 2006 Physica C 441 70
[26] Delheusy M, Stierle A, Kasper N, Kurta R P, Vlad A, Dosch H, Antoine C, Resta A, Lundgren E and Andersen J 2008 Appl. Phys. Lett. 92 101911
[27] Romanenko A and Schuster D I 2017 Phys. Rev. Lett. 119 264801
[28] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601
[29] Proslier T, Zasadzinski J, Moore J, Pellin M, Elam J, Cooley L, Antoine C, Norem J and Gray K E 2008 Appl. Phys. Lett. 93 10
[30] Semione G D L, Pandey A D, Tober S, Pfrommer J, Poulain A, Drnec J, Schütz G, Keller T F, Noei H, Vonk V, Foster B and Stierle A 2019 Phys. Rev. Accel. Beams 22 103102
[31] Bal M, Murthy A A, Zhu S, Crisa F, You X, Huang Z, Roy T, Lee J, van Zanten D, Pilipenko R, Nekrashevich I, Lunin A, Bafia D, Krasnikova Y, Kopas C J, Lachman E O, Miller D, Mutus J Y, Reagor M J, Cansizoglu H, Marshall J, Pappas D P, Vu K, Yadavalli K, Oh J S, Zhou L, Kramer M J, Lecocq F, Goronzy D P, Torres-Castanedo C G, Pritchard P G, Dravid V P, Rondinelli J M, Bedzyk M J, Hersam M C, Zasadzinski J, Koch J, Sauls J A, Romanenko A and Grassellino A 2024 npj Quantum Inf. 10 43
[32] Foxen B, Mutus J Y, Lucero E, Graff R, Megrant A, Chen Y, Quintana C, Burkett B, Kelly J, Jeffrey E, Yang Y, Yu A, Arya K, Barends R, Chen Z, Chiaro B, Dunsworth A, Fowler A, Gidney C, Giustina M, Huang T, Klimov P, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C and Martinis J M 2018 Quantum Sci. Technol. 3 014005
[33] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrøm C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
[34] Probst S, Song F B, Bushev P A, Ustinov A V and Weides M 2015 Rev. Sci. Instrum. 86 024706
[35] Verjauw J, Potočnik A, Mongillo M, Acharya R, Mohiyaddin F, Simion G, Pacco A, Ivanov T, Wan D, Vanleenhove A, Souriau L, Jussot J, Thiam A, Swerts J, Piao X, Couet S, Heyns M, Govoreanu B and Radu I 2021 Phys. Rev. Appl. 16 014018
[1] Effect of antioxidants on the efficiency of jet milling and the powder characteristics of Sm2Co17 permanent magnets
Da-Shuai Xu(许大帅), Lei Liu(刘雷), Jian-Hui Yuan(袁建辉), Bo Zhou(周波), Chuang-Hui Dong(董创辉), Feng-Qing Wang(王凤青), Yong Ding(丁勇), Ying-Li Sun(孙颖莉), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2024, 33(9): 098103.
[2] Core level excitation spectra of La and Mn ions in LaMnO3
Fujian Li(李福建), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2024, 33(3): 033201.
[3] Narrowed Si0.7Ge0.3 channel FinFET with subthreshold swing of 64 mV/Dec using cyclic self-limited oxidation and removal process
Hao-Yan Liu(刘昊炎), Yong-Liang Li(李永亮), and Wen-Wu Wang(王文武). Chin. Phys. B, 2023, 32(7): 077302.
[4] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[8] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[9] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[10] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[11] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[12] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[13] Oxidation degree dependent adsorption of ssDNA onto graphene-based surface
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2021, 30(10): 106806.
[14] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[15] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
No Suggested Reading articles found!