Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 023701    DOI: 10.1088/1674-1056/ad92fc
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms

Zhennan Liu(刘震南)1, Hongxing Zhao(赵宏星)1, Yunfei Wang(王云飞)1,†, Yuqing Li(李玉清)1,2,‡, Jizhou Wu(武寄洲)1,2, Wenliang Liu(刘文良)1,2, Peng Li(李鹏)3, Yongming Fu(付永明)3, Liantuan Xiao(肖连团)1,2, Jie Ma(马杰)1,2, and Suotang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Abstract  Interactions between atoms in ultracold quantum gases play an important role in the study of the quantum simulation of many-body physics. Feshbach resonance is a versatile tool to control atomic interactions, where the atom-loss spectra are widely used to characterize Feshbach resonances of various atomic species. Here, we report the experimental observation of momentum-induced broadening of widths in atom-loss spectra of narrow $^{133}$Cs Feshbach resonances. We drive Bragg excitation to kick the Bose-Einstein condensate of Cs atoms in a cigar-shaped optical trap, and measure the atom-loss spectra of narrow Feshbach resonances of moving ultracold atoms near the magnetic fields 19.84 G and 47.97 G. We show that the widths of the atom-loss spectra are broadened for the atoms with the momenta of 2$\hbar k$ and 4$\hbar k$, and even observe splitting in the Feshbach resonance of the atoms with momentum 4$\hbar k$. Our work may open the way for exploring the interesting physical phenomena arising from the collective velocity of colliding atoms that have been ignored in general.
Keywords:  Bose-Einstein condensate      Feshbach resonances      atom-loss spectra  
Received:  11 September 2024      Revised:  03 November 2024      Accepted manuscript online:  15 November 2024
PACS:  37.10.De (Atom cooling methods)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: This research is funded by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant Nos. 62020106014, 92165106, 62175140, 12074234, and 11974331), and the Applied Basic Research Project of Shanxi Province, China (Grant No. 202203021224001).
Corresponding Authors:  Yunfei Wang, Yuqing Li     E-mail:  wangyf@sxu.edu.cn;lyqing.2006@163.com

Cite this article: 

Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂) Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms 2025 Chin. Phys. B 34 023701

[1] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[2] Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232
[3] Hung C L, Zhang X, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604
[4] Roati G, Zaccanti M, D’Errico C, Catani J, Modugno M, Simoni A, Inguscio M and Modugno G 2007 Phys. Rev. Lett. 99 010403
[5] Ni K K, Ospelkaus S, De Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[6] Lang F,Winkler K, Strauss C, Grimm R and Denschlag J H 2008 Phys. Rev. Lett. 101 133005
[7] Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M and Nägerl H C 2010 Nat. Phys. 6 265
[8] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
[9] Berninger M, Zenesini A, Huang B, Harm W, Nägerl H C, Ferlaino F, Grimm R, Julienne P S and Hutson J M 2011 Phys. Rev. Lett. 107 120401
[10] Ferlaino F, Zenesini A, Berninger M, Huang B, Nägerl H C and Grimm R 2011 Few-Body Syst. 51 113
[11] Zaccanti M, Deissler B, D’Errico C, Fattori M, Jona-Lasinio M,Müller S, Roati G, Inguscio M and Modugno G 2009 Nat. Phys. 5 586
[12] Knoop S, Ferlaino F, Mark M, Berninger M, Schöbel H, Nägerl H C and Grimm R 2009 Nat. Phys. 5 227
[13] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[14] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[15] Eigen C, Glidden J A P, Lopes R, Navon N, Hadzibabic Z and Smith R P 2017 Phys. Rev. Lett. 119 250404
[16] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[17] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 120401
[18] Zwerger W 2012 The BCS-BEC crossover and the unitary Fermi gas (Berlin: Springer)
[19] Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G and Nägerl H C 2009 Science 325 1224
[20] Haller E, Hart R, Mark M J, Danzl J G, Reichsöllner L, Gustavsson M, Dalmonte M, Pupillo G and Nägerl H C 2010 Nature 466 597
[21] Kohlert T, Scherg S, Li X, Lüschen H P, Das Sarma S, Bloch I and Aidelsburger M 2019 Phys. Rev. Lett. 122 170403
[22] Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U and Bloch I 2015 Science 349 842
[23] Meinert F, Mark M J, Kirilov E, Lauber K, Weinmann P, Gröbner M, Daley A J and Nägerl H C 2014 Science 344 1259
[24] Wang Y F, Zhang J H, Li Y Q, Wu J Z, Liu W L, Mei F, Hu Y, Xiao L T, Ma J, Chin C and Jia S T 2022 Phys. Rev. Lett. 129 103401
[25] Li Y Q, Du H Y, Wang Y F, Liang J J, Xiao L T, Yi W, Ma J and Jia S T 2023 Nat. Commun. 14 7560
[26] Chin C, Vuletić V, Kerman A J, Chu S, Tiesinga E, Leo P J and Williams C J 2004 Phys. Rev. A 70 032701
[27] Vuletić V, Kerman A J, Chin C and Chu S 1999 Phys. Rev. Lett. 82 1406
[28] Leo P J, Williams C J and Julienne P S 2000 Phys. Rev. Lett. 85 2721
[29] Mark M, Ferlaino F, Knoop S, Danzl J G, Kraemer T, Chin C, Nägerl H C and Grimm R 2007 Phys. Rev. A 76 042514
[30] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[31] Ticknor C, Regal C A, Jin D S and Bohn J L 2004 Phys. Rev. A 69 042712
[32] Dong S, Cui Y, Shen C, Wu Y, Tey M K, You L and Gao B 2016 Phys. Rev. A 94 062702
[33] Yoshida J, Saito T,Waseem M, Hattori K and Mukaiyama T 2018 Phys. Rev. Lett. 120 133401
[34] Waseem M, Saito T, Yoshida J and Mukaiyama T 2017 Phys. Rev. A 96 062704
[35] Gerken M, Tran B, Häfner S, Tiemann E, Zhu B and Weidemüller M 2019 Phys. Rev. A 100 050701
[36] Ketterle W, Durfee D S, and Stamper-Kurn D M 1999 Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, edited by Inguscio M, Stringari S and Wieman C F (Amsterdam: IOS Press) pp. 67-176
[37] Jie J W and Zhang P 2017 Phys. Rev. A 95 060701
[38] Wang Y F, Li Y Q, Wu J Z, Liu W L, Hu J Z, Ma J, Xiao L T and Jia S T 2021 Opt. Express 29 13960
[39] Du H Y, Li Y Q,Wang Y F,Wu J Z, LiuWL, Li P, Fu Y M, Ma J, Xiao L T and Jia S T 2023 J. Appl. Phys. 134 214403
[40] Meier E J, An F A and Gadway B 2016 Phys. Rev. A 93 051602
[41] Li Y Q, Liu Z N, Wang Y F, Wu J Z, Liu W L, Fu Y M, Li P, Ma J, Xiao L T and Jia S T 2023 Chin. Phys. B 32 103701
[42] Danzl J G, Haller E, Gustavsson M, Mark M J, Hart R, Bouloufa N, Dulieu O, Ritsch H and Nägerl H C 2008 Science 321 1062
[43] Li Y Q, Zhang J H, Wang Y F, Du H Y, Wu J Z, Liu W L, Mei F, Ma J, Xiao L T and Jia S T 2022 Light Sci. Appl. 11 13
[44] Lange A D, Pilch K, Prantner A, Ferlaino F, Engeser B, Nägerl H C, Grimm R and Chin C 2009 Phys. Rev. A 79 013622
[1] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[2] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[3] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[4] Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(10): 100303.
[5] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[6] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[7] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[14] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!