Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127501    DOI: 10.1088/1674-1056/ad8550
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials

Changji Xu(徐长吉)1, Xinyu Jiang(姜心雨)1, Zhengguang Zou(邹正光)1,2,†, Zhuojia Xie(谢卓家)1, Weijian Zhang(张伟建)1, and Min Feng(冯敏)1
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China;
2 Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, Guilin 541004, China
Abstract  The structural, magnetic and magnetocaloric properties of perovskite manganites La$_{0.67}$Sr$_{0.28}$Pr$_{0.05}$Mn$_{1-x}$Co$_{x}$O$_{3}$ ($x = 0.05$, 0.075 and 0.10) (LSPMCO) are investigated. LSPMCO crystallizes as a rhombohedral structure with $R$-$3c$ space group. As the Co content increases, the cell volume expands, the Mn-O-Mn bond angle reduces and the length of the Mn-O bond increases. The samples show irregular submicron particles under a Zeiss scanning electron microscopy. The particle size becomes larger with increasing doping. The chemical composition of the samples is confirmed by x-ray photoelectron spectroscopy (XPS). The ferromagnetic (FM) to paramagnetic (PM) phase transition occurs near the Curie temperature ($T_{\rm C}$), and all transitions are second-order phase transitions (SMOPT) characterized by minimal thermal and magnetic hystereses. Critical behavior analysis indicates that the critical parameters of LSPMCO closely align with those predicted by the mean-field model. The $T_{\rm C}$ declines with Co doping and reaches near room temperature (302 K) at $x = 0.075$. The maximum magnetic entropy change ($-\Delta S_{\rm M}^{\max}$) at $x = 0.05$ is 4.27 J/kg$\cdot$K, and the relative cooling power (RCP) peaks at 310.81 J/K. Therefore, the system holds significant potential for development as a magnetic refrigeration material, meriting further professional and objective evaluation.
Keywords:  magnetic refrigeration      perovskite manganites      second-order phase transitions      relative cooling power      magnetocaloric effect  
Received:  21 June 2024      Revised:  10 September 2024      Accepted manuscript online:  10 October 2024
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  75.47.Lx (Magnetic oxides)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52162038).
Corresponding Authors:  Zhengguang Zou     E-mail:  zouzgglut@163.com

Cite this article: 

Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏) Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials 2024 Chin. Phys. B 33 127501

[1] Lyubina J 2017 J. Phys. D: Appl. Phys. 50 053002
[2] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305
[3] Chaudhary V and Ramanujan R 2016 Scientific Reports 6 35156
[4] Chaudhary V, Chen X and Ramanujan R V 2019 Progress in Materials Science 100 64
[5] Brück E 2005 J. Phys. D: Appl. Phys. 38 R381
[6] Bai J, Dong Q, Zhang L, Liu Q, Cheng J, Liu P, Li C, Sun Y, Huang Y and Ren Z 2023 Chin. Phys. Lett. 40 127501
[7] Zhang Y, Shi Y G, Wang L C, Zheng X Q, Liu J, Jin Y X, Zhang K W, Liu H X, Zong S T and Sun Z G 2022 Chin. Phys. B 31 077501
[8] Yu S L, Tian L, Wang J F, Zhao X G, Li D, Mo Z J and Li B 2024 Chin. Phys. B 33 057502
[9] Shull R D 1993 IEEE Transactions on Magnetics 29 2614
[10] Chaudhary V, Maheswar Repaka D, Chaturvedi A, Sridhar I and Ramanujan R 2014 J. Appl. Phys. 116 163918
[11] Franco V, Blázquez J, Ingale B and Conde A 2012 Annual Review of Materials Research 42 305
[12] Chen W, Hong B, Zeng Y, Wang X, Peng X, Li J and Xu J 2023 J. Alloys Compd. 933 167625
[13] Smith A, Bahl C R, Bjørk R, Engelbrecht K, Nielsen K K and Pryds N 2012 Advanced Energy Materials 2 1288
[14] Markovich V, Wisniewski A and Szymczak H 2014 Handbook of magnetic materials (Elsevier) pp. 1-201
[15] Dhahri J, Mnefgui S, Hassine A B, Tahri T, Oumezzine M and Hlil E 2018 Physica B 537 93
[16] Akça G, Ç etin S K and Ekicibil A 2017 Ceramics International 43 15811
[17] Liu Z, Lin W, Zhou K and Yan J 2018 Ceramics International 44 2797
[18] Millis A 1998 Nature 392 147
[19] Fontcuberta J, Martinez B, Seffar A, Pinol S, Garcia-Munoz J and Obradors X 1996 Phys. Rev. Lett. 76 1122
[20] Goldschmidt V M 1926 Naturwissenschaften 14 477
[21] Kursun C, Gogebakan M, Uludag E, Bozgeyik M S and Uludag F S 2018 Scientific Reports 8 13083
[22] Das S and Dey T 2007 J. Phys. D: Appl. Phys. 40 1855
[23] Moradi J, Ghazi M, Ehsani M and Kameli P 2014 Journal of Solid State Chemistry 215 1
[24] Bellakki M B, Shivakumara C, Vasanthacharya N and Prakash A 2010 Materials Research Bulletin 45 1685
[25] Kumar S, Dwivedi G, Kumar S, Mathur R, Saxena U, Ghosh A, Joshi A G, Yang H and Chatterjee S 2015 Dalton Transactions 44 3109
[26] Liu Y, Sun T, Dong G, Zhang S, Chu K, Pu X, Li H and Liu X 2019 Ceramics International 45 17467
[27] Reddy M P, Shakoor R and Mohamed A 2016 Materials Chemistry and Physics 177 346
[28] Sheela G E, Manimaran D, Joe I H, Rahim S and Jothy V B 2015 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 143 40
[29] Koushalya P and Manjunatha A 2021 Applied Surface Science Advances 6 100135
[30] Rajan A, Sharma M and Sahu N K 2020 Scientific Reports 10 15045
[31] Kucharczyk B and Tylus W 2007 Catalysis Letters 115 122
[32] Wang X, Zhang C, Zang G, Lv S and Li L 2015 J. Alloys Compd. 637 277
[33] Zhang P, Guan G, Khaerudini D S, Hao X, Xue C, Han M, Kasai Y and Abudula A 2014 Journal of Power Sources 266 241
[34] Gu Q, Wang L, Wang Y and Li X 2019 Journal of Physics and Chemistry of Solids 133 52
[35] Biesinger M C, Payne B P, Grosvenor A P, Lau L W, Gerson A R and Smart R S C 2011 Applied Surface Science 257 2717
[36] Lee S, Yoon S, Chung I, Hartwig A and Kim B 2011 Handbook of Xray Photoelectron Spectroscopy (Waltham: Perkin-Elmer Corporation)
[37] Tabata K, Hirano Y and Suzuki E 1998 Applied Catalysis A: General 170 245
[38] Chen J, Shen M, Wang X, Qi G, Wang J and Li W 2013 Applied Catalysis B: Environmental 134 251
[39] Chen S, Hao Y, Chen R, Su Z and Chen T 2021 J. Alloys Compd. 861 158584
[40] Uthaman B, Anand K, Rajan R K, Kyaw H H, Thomas S, Al-Harthi S, Suresh K and Varma M R 2015 RSC Advances 5 86144
[41] Dinamarca R, Garcia X, Jimenez R, Fierro J and Pecchi G 2016 Materials Research Bulletin 81 134
[42] Xia W, Liu X, Jin F, Jia X, Shen Y and Li J 2020 Electrochimica Acta 364 137274
[43] Pendashteh A, Palma J, Anderson M and Marcilla R 2016 RSC Advances 6 28970
[44] Choudhury T, Saied S, Sullivan J and Abbot A 1989 J. Phys. D: Appl. Phys. 22 1185
[45] Medarde M, Mesot J, Lacorre P, Rosenkranz S, Fischer P and Gobrecht K 1995 Phys. Rev. B 52 9248
[46] Al-Yahmadi I, Gismelseed A, Al Ma’Mari F, Al-Rawas A, Al-Harthi S, Yousif A, Widatallah H, Elzain M and Myint M 2021 J. Alloys Compd. 875 159977
[47] Sotirova-Haralambeva E, Wang X, Liu K, Silver T, Konstantinov K and Horvat J 2003 Science and Technology of Advanced Materials 4 149
[48] Xu M X and Jiao Z K 1999 Journal of Materials Science Letters 18 1307
[49] Hcini S, Boudard M and Zemni S 2014 Appl. Phys. A 115 985
[50] Franco V, Blázquez J and Conde A 2008 J. Appl. Phys. 103 07B316
[51] Stanley H E 1999 Rev. Mod. Phys. 71 S358
[52] Stanley H E and Ahlers G 1973 Introduction to phase transitions and critical phenomena (American Institute of Physics)
[53] Franco V, Blázquez J, Ipus J, Law J, Moreno-Ramírez L and Conde A 2018 Progress in Materials Science 93 112
[54] Schwartz A, Scheffler M and Anlage S M 2000 Phys. Rev. B 61 R870
[55] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
[56] Widom B 1965 The Journal of Chemical Physics 43 3898
[57] Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
[58] Kochmański M, Paszkiewicz T and Wolski S 2013 Euro. J. Phys. 34 1555
[59] Buschow K H J and Boer F R 2003 Physics of magnetism and magnetic materials Vol. 7 (Springer)
[60] Raoufi T, Ehsani M and Khoshnoud D S 2016 J. Alloys Compd. 689 865
[61] Guo Z, Du Y, Zhu J, Huang H, Ding W and Feng D 1997 Phys. Rev. Lett. 78 1142
[62] Lu C, Dong S, Wang K, Gao F, Li P, Lv L and Liu J M 2007 Appl. Phys. Lett. 91 172107
[63] Wang G, Li L, Zhao Z, Yu X and Zhang X 2014 Ceramics International 40 16449
[64] Morelli D T, Mance A M, Mantese J V and Micheli A L 1996 Journal of applied physics 79 373
[65] Ehsani M, Kameli P, Razavi F, Ghazi M and Aslibeiki B 2013 J. Alloys Compd. 579 406
[66] Dhahri A, Jemmali M, Dhahri E and Valente M 2015 J. Alloys Compd. 638 221
[67] Gharbi S, Marouani Y, Issaoui F, Dhahri E, Hlil E, Barille R and Costa B 2020 Journal of Materials Science: Materials in Electronics 31 11983
[68] Mnefgui S, Zaidi N, Dhahri A, Hlil E and Dhahri J 2014 Journal of Solid State Chemistry 215 193
[69] Zarifi M, Kameli P, Mansouri M, Ahmadvand H and Salamati H 2017 Solid State Commun. 262 20
[70] Turki D, Remenyi G, Mahmood S, Hlil E, Ellouze M and Halouani F 2016 Materials Research Bulletin 84 245
[71] Zhang P, Yang H, Zhang S, Ge H and Hua S 2013 Physica B 410 1
[72] Laouyenne M, Baazaoui M, Hlil E, Oumezzine M and Farah K 2022 Journal of Superconductivity and Novel Magnetism 35 2889
[73] Guedri A, Mnefgui S, Hcini S, Hlil E and Dhahri A 2021 Journal of Solid State Chemistry 297 122046
[74] Xiao G, He W, Yang T, Huang G, Wang T and Huang J 2019 Current Applied Physics 19 424
[75] Ben Jemaa F, Mahmood S, Ellouze M, Hlil E and Halouani F 2015 Journal of Materials Science 50 620
[1] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[2] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[5] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[8] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[9] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[10] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[13] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[14] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!