|
|
|
Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability |
| Zhi-Long Cao(曹智龙)1,2, Chen Cao(曹琛)1,2, Jia-Jun Xu(徐佳俊)1,2, Jia-Xu Yan(闫家旭)1,2,†, Lei Liu(刘雷)1,2, and De-Zhen Shen(申德振)1,2 |
1 State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract We report the discovery of bistable polar states with switchable polarization in the Janus monolayer 1T-MoSSe, induced by symmetry breaking in its chalcogen atomic layers. Our results demonstrate that Janus 1T-MoSSe exhibits two out-of-plane bistable polar states with switchable polarization, rather than polarization emerging from a non-polar phase, which represents an unconventional form of ferroelectric-like behavior. First-principles calculations and phenomenological modeling reveal that the inequivalent stacking of sulfur and selenium (S/Se) atoms breaks central inversion symmetry, activating non-degenerate phonon modes at the $K$-point ($K_2/K_3$) that drive the structural transformation between metastable d1T$_{\rm S}$ and d1T$_{\rm Se}$ phases. This coupling enables bipolar control of out-of-plane polarization through atomic displacements and charge redistribution, resulting in a polarization change of ΔP ≈ ±0.3 μC/cm2. The Landau free energy analysis indicates that anharmonic terms and inter-mode coupling generate an asymmetric double-well potential, which is essential for the stabilization of bistable polar states. Molecular dynamics simulations show that the d1T$_{\rm S}$ phase remains stable at high temperatures, whereas the d1T$_{\rm Se}$ phase undergoes an irreversible phase transition near 300 K, accompanied by a Peierls-like distortion of the Mo atomic chain. This transition is driven by differences in electronegativity, atomic radius, and d-p orbital hybridization between S and Se. Our findings establish a theoretical framework for engineering nonlinear responses in two-dimensional (2D) ferroelectrics and suggest that low-energy polarization reversal at room temperature can be achieved through strain or electric-field control, offering promising opportunities for non-volatile memory and piezoelectric sensing applications.
|
Received: 16 July 2025
Revised: 19 September 2025
Accepted manuscript online: 30 September 2025
|
|
PACS:
|
73.63.Bd
|
(Nanocrystalline materials)
|
| |
77.80.B-
|
(Phase transitions and Curie point)
|
| |
63.20.dk
|
(First-principles theory)
|
|
| Fund: We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 12334014 and 11727902) and the Overseas High-level Talents Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Jia-Xu Yan
E-mail: yanjiaxu@ciomp.ac.cn
|
Cite this article:
Zhi-Long Cao(曹智龙), Chen Cao(曹琛), Jia-Jun Xu(徐佳俊), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振) Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability 2025 Chin. Phys. B 34 117305
|
[1] Birol T 2018 Nature 560 174 [2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [3] Yamauchi K and Barone P 2014 J. Phys.: Condens. Matter 26 103201 [4] Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Cregut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Iniguez J, Sinitskii A and Gruverman A 2022 npj 2D Mater. Appl. 6 18 [5] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp. 14 [6] Watanabe Y 2010 Ferroelectrics 406 35 [7] Shuai W J, Wang R and Zhao J Z 2023 Phys. Rev. B 107 155427 [8] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357 [9] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274 [10] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508 [11] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253 [12] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956 [13] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601 [14] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080 [15] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 [16] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160 [17] Sheng H, Fang Z and Wang Z 2023 Phys. Rev. B 108 104109 [18] Shirodkar S N and Waghmare U V 2014 Phys. Rev. Lett. 112 157601 [19] Choi J H and Jhi S H 2019 J. Phys.: Condens. Matter 32 045702 [20] Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M and Hao J 2019 Nat. Commun. 10 1775 [21] Wan L B, Xu B, Chen P and Zhao J Z 2023 Phys. Rev. B 108 165430 [22] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867 [23] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102 [24] Chen W, Hou X, Shi X and Pan H 2018 ACS Appl. Mater. Interfaces 10 35289 [25] Yang Y, Zhang Y, Ye H, Yu Z, Liu Y, Su B and Xu W 2019 Superlattices Microstruct. 131 8 [26] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X and Xu J 2021 ACS Nano 15 20319 [27] Zheng Z, Nottbohm C T, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M and Golzh auser A 2010 Angew. Chem. Int. Ed. 49 8493 [28] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744 [29] Hu T, Jia F, Zhao G, Wu J, Stroppa A and Ren W 2018 Phys. Rev. B 97 235404 [30] Li S, Wu W, Feng X, Guan S, Feng W, Yao Y and Yang S A 2020 Phys. Rev. B 102 235435 [31] Zhao J, Qi Y, Yao C and Zeng H 2024 Phys. Rev. B 109 035408 [32] Er D, Ye H, Frey N C, Kumar H, Lou J and Shenoy V B 2018 Nano Lett. 18 3943 [33] Yin W J, Wen B, Nie G Z, Wei X L and Liu L M 2018 J. Mater. Chem. C 6 1693 [34] Dong L, Lou J and Shenoy V B 2017 ACS Nano 11 8242 [35] Qiu J, Li H, Chen X, Zhu B, Guo H, Zhang F, Ding Z, Lang L, Yu J and Bao J 2021 J. Appl. Phys. 129 125109 [36] Liu Z Q, Sun Z H, Qu X Y, Nie K K, Yang Y W, Li B J, Chong S K, Yin Z Y and Huang W 2024 J. Am. Chem. Soc. 146 23252 [37] Yao Q F, Cai J, Tong W Y, Gong S J, Wang J Q, Wan X, Duan C G and Chu J H 2017 Phys. Rev. B 95 165401 [38] Ma X, Wu X, Wang H and Wang Y 2018 J. Mater. Chem. A 6 2295 [39] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366 [40] Huang X H, Liu C S and Zhou P 2022 npj 2D Mater. Appl. 6 51 [41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [42] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 [45] Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890 [46] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901 [47] Henkelman G and Jonsson H 2000 J. Chem. Phys. 113 9978 [48] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [49] Togo A 2023 J. Phys. Soc. Jpn. 92 012001 [50] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001 [51] Stokes H T, Hatch D M and Campbell B J 2007 Isotropy software suite [52] Hoover W G 1985 Phys. Rev. A 31 1695 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|