Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117305    DOI: 10.1088/1674-1056/ae0d57
RAPID COMMUNICATION Prev   Next  

Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability

Zhi-Long Cao(曹智龙)1,2, Chen Cao(曹琛)1,2, Jia-Jun Xu(徐佳俊)1,2, Jia-Xu Yan(闫家旭)1,2,†, Lei Liu(刘雷)1,2, and De-Zhen Shen(申德振)1,2
1 State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report the discovery of bistable polar states with switchable polarization in the Janus monolayer 1T-MoSSe, induced by symmetry breaking in its chalcogen atomic layers. Our results demonstrate that Janus 1T-MoSSe exhibits two out-of-plane bistable polar states with switchable polarization, rather than polarization emerging from a non-polar phase, which represents an unconventional form of ferroelectric-like behavior. First-principles calculations and phenomenological modeling reveal that the inequivalent stacking of sulfur and selenium (S/Se) atoms breaks central inversion symmetry, activating non-degenerate phonon modes at the $K$-point ($K_2/K_3$) that drive the structural transformation between metastable d1T$_{\rm S}$ and d1T$_{\rm Se}$ phases. This coupling enables bipolar control of out-of-plane polarization through atomic displacements and charge redistribution, resulting in a polarization change of ΔP ≈ ±0.3 μC/cm2. The Landau free energy analysis indicates that anharmonic terms and inter-mode coupling generate an asymmetric double-well potential, which is essential for the stabilization of bistable polar states. Molecular dynamics simulations show that the d1T$_{\rm S}$ phase remains stable at high temperatures, whereas the d1T$_{\rm Se}$ phase undergoes an irreversible phase transition near 300 K, accompanied by a Peierls-like distortion of the Mo atomic chain. This transition is driven by differences in electronegativity, atomic radius, and d-p orbital hybridization between S and Se. Our findings establish a theoretical framework for engineering nonlinear responses in two-dimensional (2D) ferroelectrics and suggest that low-energy polarization reversal at room temperature can be achieved through strain or electric-field control, offering promising opportunities for non-volatile memory and piezoelectric sensing applications.
Keywords:  Janus MoSSe monolayer      ferroelectric phase transitions      first-principles calculations  
Received:  16 July 2025      Revised:  19 September 2025      Accepted manuscript online:  30 September 2025
PACS:  73.63.Bd (Nanocrystalline materials)  
  77.80.B- (Phase transitions and Curie point)  
  63.20.dk (First-principles theory)  
Fund: We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 12334014 and 11727902) and the Overseas High-level Talents Program of the Chinese Academy of Sciences.
Corresponding Authors:  Jia-Xu Yan     E-mail:  yanjiaxu@ciomp.ac.cn

Cite this article: 

Zhi-Long Cao(曹智龙), Chen Cao(曹琛), Jia-Jun Xu(徐佳俊), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振) Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability 2025 Chin. Phys. B 34 117305

[1] Birol T 2018 Nature 560 174
[2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[3] Yamauchi K and Barone P 2014 J. Phys.: Condens. Matter 26 103201
[4] Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Cregut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Iniguez J, Sinitskii A and Gruverman A 2022 npj 2D Mater. Appl. 6 18
[5] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp. 14
[6] Watanabe Y 2010 Ferroelectrics 406 35
[7] Shuai W J, Wang R and Zhao J Z 2023 Phys. Rev. B 107 155427
[8] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[9] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274
[10] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[11] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253
[12] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956
[13] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[14] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080
[15] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[16] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160
[17] Sheng H, Fang Z and Wang Z 2023 Phys. Rev. B 108 104109
[18] Shirodkar S N and Waghmare U V 2014 Phys. Rev. Lett. 112 157601
[19] Choi J H and Jhi S H 2019 J. Phys.: Condens. Matter 32 045702
[20] Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M and Hao J 2019 Nat. Commun. 10 1775
[21] Wan L B, Xu B, Chen P and Zhao J Z 2023 Phys. Rev. B 108 165430
[22] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[23] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102
[24] Chen W, Hou X, Shi X and Pan H 2018 ACS Appl. Mater. Interfaces 10 35289
[25] Yang Y, Zhang Y, Ye H, Yu Z, Liu Y, Su B and Xu W 2019 Superlattices Microstruct. 131 8
[26] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X and Xu J 2021 ACS Nano 15 20319
[27] Zheng Z, Nottbohm C T, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M and Golzh auser A 2010 Angew. Chem. Int. Ed. 49 8493
[28] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744
[29] Hu T, Jia F, Zhao G, Wu J, Stroppa A and Ren W 2018 Phys. Rev. B 97 235404
[30] Li S, Wu W, Feng X, Guan S, Feng W, Yao Y and Yang S A 2020 Phys. Rev. B 102 235435
[31] Zhao J, Qi Y, Yao C and Zeng H 2024 Phys. Rev. B 109 035408
[32] Er D, Ye H, Frey N C, Kumar H, Lou J and Shenoy V B 2018 Nano Lett. 18 3943
[33] Yin W J, Wen B, Nie G Z, Wei X L and Liu L M 2018 J. Mater. Chem. C 6 1693
[34] Dong L, Lou J and Shenoy V B 2017 ACS Nano 11 8242
[35] Qiu J, Li H, Chen X, Zhu B, Guo H, Zhang F, Ding Z, Lang L, Yu J and Bao J 2021 J. Appl. Phys. 129 125109
[36] Liu Z Q, Sun Z H, Qu X Y, Nie K K, Yang Y W, Li B J, Chong S K, Yin Z Y and Huang W 2024 J. Am. Chem. Soc. 146 23252
[37] Yao Q F, Cai J, Tong W Y, Gong S J, Wang J Q, Wan X, Duan C G and Chu J H 2017 Phys. Rev. B 95 165401
[38] Ma X, Wu X, Wang H and Wang Y 2018 J. Mater. Chem. A 6 2295
[39] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366
[40] Huang X H, Liu C S and Zhou P 2022 npj 2D Mater. Appl. 6 51
[41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[42] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[45] Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
[46] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[47] Henkelman G and Jonsson H 2000 J. Chem. Phys. 113 9978
[48] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[49] Togo A 2023 J. Phys. Soc. Jpn. 92 012001
[50] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[51] Stokes H T, Hatch D M and Campbell B J 2007 Isotropy software suite
[52] Hoover W G 1985 Phys. Rev. A 31 1695
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[4] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[5] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[6] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[7] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[8] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
[9] Stable structures and superconductivity of Ca-As-H system under high pressure
Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣). Chin. Phys. B, 2025, 34(11): 117401.
[10] Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K
Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(11): 117105.
[11] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[12] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[13] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[14] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[15] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
No Suggested Reading articles found!