| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4 |
| Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰)†, Siqi Shi(施思齐)‡ |
| School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract LiFePO$_{4}$ has normal olivine-structured ($\alpha $-LFP) and high pressure ($\beta $-LFP) phases, with the former being one of the cathode materials for commercial Li-ion batteries. Despite extensive focus on the respective electrochemical properties of the two phases, there is a lack of comparative studies on their electronic and magnetic properties, and the origin of the structural phase transition remains unclear. By combining first-principles calculations with molecular dynamics simulations, we find that the anisotropic compression of Li—O bonds drives the structural phase transition from $\alpha $-LFP to $\beta $-LFP at a critical pressure of 20 GPa, while $\beta $-LFP undergoes a transition from semiconductor to metal due to Fe$^{3+}$ generated during delithiation. Their antiferromagnetic (AFM) ground states are predicted to arise from the negative magnetic exchange interactions between nearest and next-nearest neighbor sites, with the corresponding Néel temperature showing significant enhancement under pressure. Furthermore, compared with $\alpha $-LFP, $\beta $-LFP shows increases in bulk, shear, and Young's moduli of 8%, 13%, and 12%, respectively. These findings enrich the physical property data of LiFePO$_{4}$ phase compounds, providing knowledge for expanding the application scenarios of the $\alpha $-LFP phase under special operating conditions such as high pressure.
|
Received: 16 July 2025
Revised: 15 September 2025
Accepted manuscript online: 26 September 2025
|
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
| |
63.20.dk
|
(First-principles theory)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12304089) and the start-up foundation from Shanghai University. Calculations were partially performed on computers at the Shanghai Technical Service Center for Scientific and Engineering Computing, Shanghai University. |
Corresponding Authors:
Jie Li, Siqi Shi
E-mail: lij@shu.edu.cn;sqshi@shu.edu.cn
|
Cite this article:
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), Siqi Shi(施思齐) Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4 2025 Chin. Phys. B 34 118201
|
[1] Albertus P, Anandan V, Ban C, et al. 2021 ACS Energy Lett. 6 1399 [2] Tao R, Gu Y, Du Z, Lyu X and Li J 2025 Nat. Rev. Clean Technol. 1 116 [3] Li L,Wu L,Wu F, Song S, Zhang X, Fu C, Yuan D and Xiang Y 2017 J. Electrochem. Soc. 164 A2138 [4] He J, Meng J and Huang Y 2023 J. Power Sources 570 232965 [5] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188 [6] Yamada A, Chung S C and Hinokuma K 2001 J. Electrochem. Soc. 148 A224 [7] Liu H, Strobridge F C, Borkiewicz O J,Wiaderek K M, Chapman KW, Chupas P J and Grey C P 2014 Science 344 1252817 [8] Wang W, Wang R, Zhan R, Du J, Chen Z, Feng R, Tan Y, Hu Y, Ou Y, Yuan Y, Li C, Xiao Y and Sun Y 2023 Nano Lett. 23 7485 [9] Zhao X,Wang X, Guo J, Gu Z, Cao J, Yang J, Lu F, Zhang J andWu X 2024 Adv. Mater. 36 2308927 [10] Cao M, Liu Z, Zhang X, Yang L, Xu S, Weng S, Zhang S, Li X, Li Y, Liu T, Gao Y, Wang X, Wang Z and Chen L 2023 Adv. Funct. Mater. 33 2210032 [11] Chung S, Bloking J and Chiang Y 2002 Nat. Mater. 1 123 [12] Ouyang C, Wang D, Shi S, Wang Z, Li H, Huang X and Chen L 2006 Chin. Phys. Lett. 23 61 [13] Shi S, Liu L, Ouyang C, Wang D, Wang Z, Chen L and Huang X 2003 Phys. Rev. B 68 195108 [14] Li H, Wang Z, Chen L and Huang X 2009 Adv. Mater. 21 4593 [15] Li Z, Zhang D and Yang F 2009 J. Mater. Sci. 44 2435 [16] Andersson A S and Thomas J O 2001 J. Power Sources 97 498 [17] Gai J, Yang J, Yang W, Li Q, Wu X and Li H 2023 Chin. Phys. Lett. 40 086101 [18] Li Y, Sun S, He Y and Li H 2022 Chin. Phys. Lett. 39 026101 [19] Du J, Tao H, Chen Y, Yuan X, Lian C and Liu H 2021 Chin. Phys. Lett. 38 118201 [20] Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F and Julien C 2009 Chem. Mater. 21 1636 [21] García-Moreno O, Alvarez-Vega M, García-Alvarado F, García-Jaca J, Gallardo-Amores J, Sanjuán M and Amador U 2001 Chem. Mater. 13 1570 [22] Lin H and Zeng Z 2011 IEEE Trans. Magn. 47 3817 [23] Dong H, Guo H, He Y, Gao J, HanW, Lu X, Yan S, Yang K, Li H, Chen D and Li H 2017 Solid State Ion. 301 133 [24] Wu C, Huang W, Liu L, Wang H, Zeng Y, Xie J, Jin C and Zhang Z 2016 CrystEngComm 18 7707 [25] Guo H, Song X, Zhuo Z, Hu J, Liu T, Duan Y, Zheng J, Chen Z, Yang W, Amine K and Pan F 2016 Nano Lett. 16 601 [26] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [27] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169 [28] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [29] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [30] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196 [31] Ouyang C, Shi S, Wang Z, Huang X and Chen L 2004 Phys. Rev. B 69 104303 [32] Pei B, Yao H, Zhang W and Yang Z 2012 J. Power Sources 220 317 [33] Maxisch T and Ceder G 2006 Phys. Rev. B 73 174112 [34] Zhang Z, Ma H and Wan B 2024 JOM 77 2943 [35] Zeng G, Caputo R, Carriazo D, Luo L and NiederbergerM2013 Chem. Mater. 25 3399 [36] Fisher C A J, Hart Prieto V M and Islam M S 2008 Chem. Mater. 20 5907 [37] Adams S and Prasada Rao R 2011 Solid State Ion. 184 57 [38] Santoro R and Newnham R 1967 Acta Cryst. 22 344 [39] Li J, Garlea V, Zarestky J and Vaknin D 2006 Phys. Rev. B 73 0234410 [40] Werner J, Neef C, Koo C, Zvyagin S, Ponomaryov A and Klingeler R 2020 Phys. Rev. Mater. 4 115403 [41] Shi S, Ouyang C, Xiong Z, Liu L, Wang Z, Li H, Wang D, Chen L and Huang X 2005 Phys. Rev. B 71 144404 [42] Zhang Y, Alarco J, Best A, Snook G, Talbot P and Nerkar J 2019 RSC Adv. 9 1134 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|