Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117401    DOI: 10.1088/1674-1056/ae00ac
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Stable structures and superconductivity of Ca-As-H system under high pressure

Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚)†, and Jurong Zhang(张车荣)‡
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  Obtaining room-temperature superconductors has long been a research hotspot in the field of condensed matter physics. Previous studies have shown that doping strategies can effectively enhance the superconducting properties of materials. In this work, we employed first-principles calculations combined with the particle swarm optimization method to explore the structural possibilities of the Ca-doped As-H ternary system and to calculate the electronic and superconducting properties of the newly identified structures. Two thermodynamically stable hydrides were found under high pressure. The $P$4/nmm-Ca$_{2}$AsH$_{4}$ phase remains thermodynamically stable within the pressure range of 90-200 GPa, while the Cc-Ca$_{2}$AsH$_{6}$ phase exhibits stability over a broader range of 79-200 GPa. Electron-phonon coupling analysis indicates that the superconducting critical temperatures ($T_{\rm c}$) of $P$4/nmm-Ca$_{2}$AsH$_{4}$ and Cc-Ca$_{2}$AsH$_{6}$ are 11 K and 16 K at 100 GPa, respectively. The incorporation of Ca significantly reduces the thermodynamic stability pressure of As-H compounds with higher hydrogen content, thereby improving their synthetic accessibility.
Keywords:  superconductivity      first-principles calculations      hydrogen-rich compounds  
Received:  09 June 2025      Revised:  08 August 2025      Accepted manuscript online:  29 August 2025
PACS:  74.62.Fj (Effects of pressure)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Kc (Phonons)  
  63.20.dk (First-principles theory)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12204280 and 12147135), the Natural Science Foundation of Shandong Province (Grant No. ZR202103010004), the China Postdoctoral Science Foundation (Certificate Nos. 2023T160396 and 2021M691980), and the Youth Innovation Team Plan of Colleges and Universities in Shandong Province (Grant No. 2023KJ350).
Corresponding Authors:  Gang Chen, Jurong Zhang     E-mail:  phdgchen@163.com;zjr@calypso.cn
About author:  2025-117401-251012.pdf

Cite this article: 

Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣) Stable structures and superconductivity of Ca-As-H system under high pressure 2025 Chin. Phys. B 34 117401

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
[2] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[3] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[4] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[5] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[6] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[7] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[8] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[9] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G and Ma Y 2022 Phys. Rev. Lett. 128 167001
[10] Troyan I A, Semenok D V, Kvashnin A G, et al. 2021 Adv. Mater. 33 2006832
[11] Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075
[12] Gao G, Wang L, Li M, Zhang J, Howie R T, Gregoryanz E, Struzhkin V V, Wang L and Tse J S 2021 Mater. Today Phys. 21 100546
[13] Lilia B, Hennig R, Hirschfeld P, et al. 2022 J. Phys.: Condens. Matter 34 183002
[14] Zhao W, Huang X, Zhang Z, Chen S, Du M, Duan D and Cui T 2023 Natl. Sci. Rev. 10 nwad307
[15] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[16] Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H and Ma Y 2023 Phys. Rev. Lett. 130 266001
[17] Wang S, Wu Z, Shen Z, Wang H, Li H, Li M, Zhang S, Song J, Liu Y, Gao G, Wang L and Tian Y 2025 Phys. Rev. B 111 184106
[18] Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W and Ma Y 2016 Chem. Mater. 28 1746
[19] Saha S, Di Cataldo S, Giannessi F, Cucciari A, Von Der Linden W and Boeri L 2023 Phys. Rev. Mater. 7 054806
[20] Xu M, Duan D, Du M, Zhao W, An D, Song H and Cui T 2023 Phys. Chem. Chem. Phys. 25 32534
[21] Chen H, Zhang W, Xue X and Lu W-C 2024 Phys. B 674 415545
[22] Zhao J, Chen B, Li S, Chang Y, Yang X, Chen M and Li D 2025 J. Mater. Chem. C 13 4128
[23] Zhu B, Shao D, Pei C, Wang Q, Wu J and Qi Y 2025 Phys. Rev. B 111
[24] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[25] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[26] Wu Q, Bergara A, Zhang X and Yang G 2025 Phys. Rev. B 111
[27] Zhang J, Liu H, Chen C and Ma Y 2024 Matter Radiat. Extrem. 9 037403
[28] Liang X, Wei X, Zurek E, Bergara A, Li P, Gao G and Tian Y 2024 Matter Radiat. Extrem. 9 018401
[29] Li X, Guo Z, Zhang X and Yang G 2024 Inorg. Chem.
[30] Zhang J, Liu H, Ma Y and Chen C 2022 Natl. Sci. Rev. 9 nwab168
[31] Li X, Yang Q, Jin D, Ding S, Bergara A, Yao Y, Zhu L, Zhao J and Yang G 2025 Phys. Rev. B 111 134111
[32] Fujihisa H, Nakamoto Y, Shimizu K, Yabuuchi T and Gotoh Y 2008 Phys. Rev. Lett. 101 095503
[33] Yao Y, Klug D D, Sun J and Martoňák R 2009 Phys. Rev. Lett. 103 055503
[34] Sakata M, Nakamoto Y, Shimizu K, Matsuoka T and Ohishi Y 2011 Phys. Rev. B 83 220512
[35] Tsuppayakorn-aek P, Luo W, Ahuja R and Bovornratanaraks T 2018 Sci. Rep. 8 3026
[36] Pickard C J and Needs R J 2007 Nat. Phys. 3 473
[37] Shao Z, Duan D, Ma Y, Yu H, Song H, Xie H, Li D, Tian F, Liu B and Cui T 2019 Inorg. Chem. 58 2558
[38] Zhang S,Wang Y, Zhang J, Liu H, Zhong X, Song H-F, Yang G, Zhang L and Ma Y 2015 Sci. Rep. 5 15433
[39] Wu J, Zhao L, Chen H, Wang D, Chen J, Guo X, Zang Q and Lu W 2018 Phys. Status Solidi B 255 1800224
[40] Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X-F, He J, Gao G and Tian Y 2019 Phys. Rev. B 99 100505
[41] Song H, Zhang Z, Du M, Jiang Q, Duan D and Cui T 2021 Phys. Rev. B 104 104509
[42] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22
[43] Checkelsky J G, Bernevig B A, Coleman P, Si Q and Paschen S 2024 Nat. Rev. Mater. 9 509
[44] Shao Z, Duan D, Ma Y, Yu H, Song H, Xie H, Li D, Tian F, Liu B and Cui T 2019 npj Comput. Mater. 5 104
[45] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin. Phys. Lett. 40 097402
[46] ChenW, Semenok D V, Kvashnin A G, Huang X, Kruglov I A, Galasso M, Song H, Duan D, Goncharov A F, Prakapenka V B, Oganov A R and Cui T 2021 Nat. Commun. 12 273
[47] Chen B, Conway L J, Sun W, Kuang X, Lu C and Hermann A 2021 Phys. Rev. B 103 035131
[48] Yu J, Yong X, Liu H and Lu S 2024 Phys. Rev. B 110 224507
[49] Li C, Ravichandran N K, Lindsay L and Broido D 2018 Phys. Rev. Lett. 121 175901
[50] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B and Cui T 2015 Phys. Rev. B 91 180502
[51] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[52] Durajski A P 2016 Sci. Rep. 6 38570
[53] Liu H, Li Y, Gao G, Tse J S and Naumov I I 2016 J. Phys. Chem. C 120 3458
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[4] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[5] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[6] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[7] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[8] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[9] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[10] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[11] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[12] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[13] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[14] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[15] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
No Suggested Reading articles found!