| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A convenient ultrasonic path for van der Waals heterostructure construction: Study on MoS2/graphene as an example |
| Wen Zhang(张文)1,†, Mingyang Gao(高铭阳)2,4,†,‡, Jun Guo(郭俊)1, Licun Fu(付立存)3, Ling Liu(刘玲)1, Jing Wang(王京)1, and Teng Ma(马腾)1 |
1 Mechanical and Electrical Engineering Department, Inner Mongolia Technical College of Mechanics & Electrics, Hohhot 015501, China; 2 School of Electronic Information, Northwest University, Xi'an 710127, China; 3 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China; 4 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore |
|
|
|
|
Abstract Ultrasound is a powerful tool in materials processing, yet its application in constructing van der Waals (vdW) heterostructures remains under-explored. In this study, MoS2 and graphene — two widely studied 2D materials — were successfully assembled into vdW heterostructures via a convenient ultrasound-driven self-assembly approach. The morphology of the heterostructures was characterized by scanning electron microscopy (SEM), while their structural and compositional features were confirmed through x-ray diffraction (XRD), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). Red-shifted Raman peaks and decreased binding energies in XPS spectra provided strong evidence of successful heterostructure formation. A three-stage assembly mechanism — comprising dispersion, assembly, and adjustment — is proposed, with acoustic cavitation playing a key role in driving the process. This study not only demonstrates the feasibility of synthesizing 2D heterostructures via an ultrasonic route but also lays a foundation for future scalable, energy-efficient fabrication strategies.
|
Received: 23 March 2025
Revised: 04 May 2025
Accepted manuscript online: 16 June 2025
|
|
PACS:
|
73.63.Rt
|
(Nanoscale contacts)
|
| |
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
| |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
| |
81.16.Dn
|
(Self-assembly)
|
|
| Fund: This study was supported by the China Inner Mongolia Autonomous Region Directly-Undergraduate Universities Basic Research Business Fund Project: ‘Environmental Protection Equipment R&D’ Shared Technology and Skills Innovation Platform Construction (Grant No. NJDYWF2301). |
Corresponding Authors:
Mingyang Gao
E-mail: mingyanggao6@163.com
|
Cite this article:
Wen Zhang(张文), Mingyang Gao(高铭阳), Jun Guo(郭俊), Licun Fu(付立存), Ling Liu(刘玲), Jing Wang(王京), and Teng Ma(马腾) A convenient ultrasonic path for van der Waals heterostructure construction: Study on MoS2/graphene as an example 2025 Chin. Phys. B 34 117304
|
[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [2] Wang W, Cheng B, Luo G Q, Yu J Ga and Cao S W 2024 Materials Today 81 137[3] Goel N, Utkarsha, Kushwaha A, Kwoka M, Kumar R and Kumar M 2024 Journal of Materials Chemistry A 12 5642 [4] Liu W J, Wu Y F, Bao X Z D, Sun L, Xie Y E and Chen Y P 2025 Advanced Functional Materials 04 2421525 [5] Carvalho A, Wang M, Zhu X, Rodin A S, Su H B and Castro Neto H C 2016 Nature Reviews Materials 1 16061 [6] Chen H L,Wen XW, Zhang J,Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan PM, ZhuangW, Zhang G Y and Zheng J R 2016 Nat. Commun. 7 12512 [7] Tang S W, Ai P, Bai S L, Wan D, Li X D, Guo W R, Zhen T and Wang H 2024 Materials Today Physics 43 101398 [8] Guo H W, Hu Z, Liu Z B and Tian J G 2021 Advanced Functional Materials 31 2007810 [9] Rafi R, Rahulan K M, Flower N A L, Abith M, Chidambaram S G T and Rajendran A S 2024 ACS Applied Nano Materials 7 11097 [10] de Sousa B P, Estrada A C, Trindade T and Fateixa S 2025 Applied Surface Science 689 162492 [11] Jacobo J R, Olea-Mejía O F, Martínez-Hernández A L and Carlos V S 2024 FlatChem 45 100654 [12] Gao H G, Shi R, Shao Y T, Liu Y N, Zhu Y F, Zhang J G, Hu X H, Li L Q and Ba Z X 2022 J. Alloys Compd. 895 162635 [13] Guan X S, Zhang X C, Zhang C M, Li R, Liu J X, Wang Y F, Wang Y W, Fan C M and Li Z 2023 Journal of Colloid and Interface Science 644 426 [14] Mei J, Liao T and Sun Z Q 2022 Energy & Environmental Materials 5 115 [15] Xiang T, Chen F X, Li X L, Wang X D, Yan Y L and Wang L S 2023 Chin. Phys. B 32 117301 [16] Xie N H, ChenWZ, Ning Y and Zeng X J 2024 Materials Today Nano 28 100529 [17] Akimov A V, Neukirch A J and Prezhdo O V 2013 Chem. Rev. 113 4496 [18] Kim S, Lee C, Lim Y S and Shim J H 2021 ACS Omega 6 278 [19] Rathi S, Lee I, Lim D, Wang J W, Ochiai Y, Aoki N, Watanabe K, Taniguchi T, Lee GH, Yu Y J, Kim P and Kim G H 2015 Nano Lett. 15 5017 [20] Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L D, Yang W, Du L J and Zhang G Y 2023 Chin. Phys. Lett. 40 047303 [21] Sheng Q L, Qiao X J, Zhou M, Yue T L and Zheng J B 2019 Handbook of Graphene Set: Biosensors and Advanced Sensors (New York: Wiley) 535 [22] Swain G, Sultana S and Parida K 2021 Nanoscale 13 9908 [23] Cao Q, Dai J J, Hao Z T, Paulus B, Eigler S and Chen X 2024 Angewandte Chemie International Edition 63 202415922 [24] Zhang X W, Biekert N, Choi S, Naylor C H, De-Eknamkul C, Huang W Z, Zhang X J, Zheng X R, Wang D K, Johnson A T C and Cubukcu E 2018 Nano Lett. 18 957 [25] Dastidar M G, Basu N, Kao I H, Katoch J, Nayak P K, Singh S and Bhallamudi V P 2024 Nanoscale 16 19413 [26] Bhat S, Banday J and Wahid M 2023 Energy Fuels 37 6012 [27] Song S, Lyu J, Qin L, Wang Z, Gong J and Yang S Y 2024 Phys. Rev. B 110 125407 [28] Gao M Y, Zhang Z Y, Zhang W, Yao X, Cao Z, Cao Q Z, Zhu H Y and Zhao W 2021 FlatChem 30 100312 [29] Hou M Z, Qiu Y T, Yan G F S, Wang J M, Zhan D, Liu X, Gao J C and Lai L F 2019 Nano Energy 62 299 [30] Zhang J, Huang G Z, Zeng J H, Jiang X D, Shi Y X, Lin S J, Chen X, Wang H B, Kong Z, Xi J H and Ji Z G 2019 J. Alloys Compd. 775 726 [31] Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J and Cui Y 2013 Nano Lett. 13 1341 [32] Pandey A, Mukherjee A, Chakrabarty S, Chanda D and Basu S 2019 ACS Applied Materials & Interfaces 11 42094 [33] Liu Y, Zhou Y, Zhang H, Ran F R, Zhao W H, Wang L, Pei C J, Zhang J D, Huang X and Li H 2019 Frontiers of Physics 14 13607 [34] Nanda S S, Kim M J, Yeom K S, An S S A, Ju H and Yi D K 2016 TrAC Trends in Analytical Chemistry 80 125 [35] Suslick K S 1990 Science 247 1439 [36] Brenner C R 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University Press) [37] Xu H X, Zeiger B W and Suslick K S 2013 Chem. Soc. Rev. 42 2555 [38] Leighton T G 1994 The Acoustic Bubble (London: Academic Press) [39] Wang P Q, Jia C C, Huang Y and Duan X F 2021 Matter 4 552 [40] Flint E B and Suslick K S 1991 Science 253 1397 [41] Suslick K S, Eddingsaas N C, Flannigan D J, Hopkins S D and Xu H X 2018 Accounts of Chemical Research 51 2169 [42] Flannigan D J and Suslick K S 2005 Nature 434 52 [43] Didenko Y T and Suslick K S 2002 Nature 418 394 [44] Didenko Y T, McNamara W B and Suslick K S 2000 Nature 407 877 [45] McNamara W B, Didenko Y T and Suslick K S 2000 J. Am. Chem. Soc. 122 8563 [46] Lee J H, Avsar A, Jung J, Tan J Y, Watanabe K, Taniguchi T, Natarajan S, Eda G, Adam S, Neto A H C and O zyilmaz B 2015 Nano Lett. 15 319 [47] Tanabe T, Tang C, Sato Y and Oyama Y 2018 J. Appl. Phys. 123 245107 [48] Lauterborn W and Kurz T 2010 Reports on Progress in Physics 73 106501 [49] Vogel A and Lauterborn W 1988 Appl. Opt. 27 1869 [50] Vogel A, Hentschel W, Holzfuss J and Lauterborn W 1986 Klinische Monatsblatter Fur Augenheilkunde 189 308 [51] Phan T T T, Nguyen T T H, Huu H T, Truong T T, Nguyen L T, Nguyen V T, Tran V A, Nguyen T L, Nguyen H L and Vo V 2021 Journal of Nanomaterials 2021 9941202 [52] Zhang L, Sun L, Liu S, Huang Y, Xu K and Ma F 2016 RSC Advanced 65 60318 [53] Wu M, Li L, Xue Y, Xu G, Tang L, Liu N and Huang W 2018 Applied Catalysis B: Environmental 228 103 [54] Venkatesh G, Elavarasan N, Srinivasan M, Palanisamy G, Macadangdang R R Jr., Vignesh S, Ramasamy P, Ali H E, Shkir M and Ahmad Z 2022 International Journal of Hydrogen Energy 47 11863 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|