Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117105    DOI: 10.1088/1674-1056/addbcb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K

Ying Luo(罗颖)1,2, Shuangyi Xu(许双旖)1,2, Yanan Wang(王亚南)3,4,†, and Yunwei Zhang(张云蔚)1,2,‡
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Monolayer CrI$_{3}$, crystalizing in the $P\bar{3}$1$m$ space group, is a prototypical two-dimensional (2D) material for observing intrinsic ferromagnetic order. However, its relatively low Curie temperature ($T_{\rm C}$) of 45 K severely limits its practical applications, highlighting the need to explore novel metastable polymorphs with enhanced magnetic properties. In this study, we employ a global crystal structure search technique combined with first-principles calculations to systematically investigate new monolayer CrI$_{3}$ phases. Our structural predictions identify two novel polymorphs with Cm and $P2/m$ space groups, both of which are dynamically stable and exhibit significantly higher $T_{\rm C}$ values of 145 K and 81 K, respectively. Electronic property calculations show that the Cm phase is a half-metal, while the $P2/m$ phase is semiconducting with a bandgap of 0.14 eV. Monte Carlo simulations attribute these enhanced $T_{\rm C}$ values to a notable increase in exchange interactions. These findings expand the known phase space of CrI$_{3}$ and provide a promising pathway for designing high-temperature 2D ferromagnets for next-generation spintronic applications.
Keywords:  chromium triiodide      2D magnets      structure prediction      first-principles calculations      monolayer structure  
Received:  25 March 2025      Revised:  13 May 2025      Accepted manuscript online:  22 May 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  63.20.dk (First-principles theory)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1610000), the National Natural Science Foundation of China (Grant Nos. 12304036 and 12304265), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515010071), and the Fundamental Research Funds for the Central Universities to Sun Yat-sen University (Grant No. 23xkjc016).
Corresponding Authors:  Yanan Wang, Yunwei Zhang     E-mail:  wangyanan@sslab.org.cn;zhangyunw@mail.sysu.edu.cn

Cite this article: 

Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚) Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K 2025 Chin. Phys. B 34 117105

[1] Ma Q, Ren G, Xu K and Ou J Z 2021 Adv. Opt. Mater. 9 2001313
[2] Gonzalez-Herrero H, G omez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y and Brihuega I 2016 Science 352 437
[3] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[4] Liu H, Sun J T, Fu H X, Sun P J, Feng Y P and Meng S 2017 ChemPhysChem 18 1916
[5] Ahn E C 2020 npj 2D Mater. Appl. 4 17
[6] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270
[8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[9] Ju H, Lee Y, Kim K T, Choi I H, Roh C J, Son S, Park P, Kim J H, Jung T S, Kim J H, Kim K H, Park J G and Lee J S 2021 Nano Lett. 21 5126
[10] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601
[11] Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X and Zhu X 2021 Nano Lett. 21 3511
[12] Cheng M, Hu Q, Huang Y, Ding C, Qiang X B, Hua C, Fang H, Lu J, Peng Y, Yang J, Xi C, Pi L, Watanabe K, Taniguchi T, Lu H Z, Novoselov K S, Lu Y and Zheng Y 2024 Nat. Phys. 20 1973
[13] Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391
[14] Jain A and McGaughey A J H 2015 Sci. Rep. 5 8501
[15] Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P and Wang H 2015 Nano Res. 8 3651
[16] Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S and Yang H 2023 Chem. Rev. 123 11230
[17] Kumar R, Joanni E, Singh R K, Singh D P and Moshkalev S A 2018 Prog. Energy Combust. Sci. 67 115
[18] Jiang X F, Weng Q, Wang X B, Li X, Zhang J, Golberg D and Bando Y 2015 J. Mater. Sci. Technol. 31 589
[19] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584
[20] Wu Z W, Yu J and Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750
[21] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457
[22] Dillon Jr J F and Olson C E 1965 J. Appl. Phys. 36 1259
[23] Li P, Wang C, Zhang J, Chen S, Guo D, Ji W and Zhong D 2020 Sci. Bull. 65 1064
[24] Hou Y, Kim J and Wu R 2019 Sci. Adv. 5 eaaw1874
[25] Zhai B X, Du J, Shen C H, Wang T X, Peng Y T, Zhang Q M and Xia C X 2019 Phys. Rev. B 100 195307
[26] Hidalgo-Sacoto R, Gonzalez R I, Vogel E E, Allende S, Mella J D, Cardenas C, Troncoso R E and Munoz F 2020 Phys. Rev. B 101 205425
[27] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401
[28] Lu Y, Fei R X, Lu X B, Zhu L H, Wang L and Yang L 2020 ACS Appl. Mater. Interfaces 12 6243
[29] Margalit G, Yan B and Oreg Y 2020 Phys. Rev. B 102 024515
[30] Su T, Lohmann M, Li J X, Xu Y D, Niu B, Alghamdi M, Zhou H D, Cui Y T, Cheng R and Taniguchi T 2020 2D Mater. 7 045006
[31] Wu Z, Shen Z, Xue Y and Song C 2022 Phys. Rev. Mater. 6 014011
[32] Luo X Y, Yang J H, Liu H Y, Wu X J, Wang Y C, Ma Y M, Wei S H, Gong X G and Xiang H J 2011 J. Am. Chem. Soc. 133 16285
[33] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[34] Wang Y C, Miao M S, Lv J, Zhu L, Yin K T, Liu H Y and Ma Y M 2012 J. Chem. Phys. 137 224110
[35] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[36] Miao N and Sun Z 2022 WIREs Comput. Mol. Sci. 12 e1545
[37] Gao P, Gao B, Lu S, Liu H, Lv J, Wang Y and Ma Y 2022 Front. Phys. 17 23203
[38] Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306
[39] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519
[40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[44] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[45] Wu Z W, Yu J and Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750
[46] Lado J L and Fernandez-Rossier J 2017 2D Mater. 4 035002
[47] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[48] Persson K A https://www.osti.gov/servlets/purl/1270385[2025-05-12]
[49] Persson K A https://www.osti.gov/servlets/purl/1190621[2025-05-12]
[50] Persson K A https://www.osti.gov/servlets/purl/1277364[2025-05-12]
[51] Persson K A https://www.osti.gov/servlets/purl/1200591[2025-05-12]
[52] Lee S Y, Hwang J Y, Park J, Nandadasa C N, Kim Y, Bang J, et al. 2020 Nat. Commun. 11 1526
[53] Xue F, Hou Y S, Wang Z and Wu R Q 2019 Phys. Rev. B 100 224429
[54] Huang C X, Feng J S, Wu F, Ahmed D, Huang B, Xiang H J, Deng K M and Kan E J 2018 J. Am. Chem. Soc. 140 11519
[55] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[4] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[5] A comprehensive evaluation of RNA secondary structures prediction methods
Xinlong Chen(陈昕龙), En Lou(娄恩), Zouchenyu Zhou(周邹辰毓), Ya-Lan Tan(谭雅岚), and Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2025, 34(8): 088710.
[6] Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties: First-principles calculations
Pan Zhang(张攀), Shihai Fu(付世海), Chunying Pu(濮春英), Xin Tang(唐鑫), and Dawei Zhou(周大伟). Chin. Phys. B, 2025, 34(5): 057103.
[7] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[8] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[9] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[10] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[11] Unconventional stabilization mechanisms and emergent superconductivity in scandium polychlorides under extreme conditions
Ziji Shao(邵子霁), Maosheng Miao(苗茂生), Wendi Zhao(赵文迪), Mengxi Wang(王梦溪), Yingmei Zhu(朱英梅), Changqiu Yu(于长秋), Defang Duan(段德芳), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(11): 116201.
[12] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
[13] Stable structures and superconductivity of Ca-As-H system under high pressure
Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣). Chin. Phys. B, 2025, 34(11): 117401.
[14] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[15] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
No Suggested Reading articles found!