| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K |
| Ying Luo(罗颖)1,2, Shuangyi Xu(许双旖)1,2, Yanan Wang(王亚南)3,4,†, and Yunwei Zhang(张云蔚)1,2,‡ |
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Monolayer CrI$_{3}$, crystalizing in the $P\bar{3}$1$m$ space group, is a prototypical two-dimensional (2D) material for observing intrinsic ferromagnetic order. However, its relatively low Curie temperature ($T_{\rm C}$) of 45 K severely limits its practical applications, highlighting the need to explore novel metastable polymorphs with enhanced magnetic properties. In this study, we employ a global crystal structure search technique combined with first-principles calculations to systematically investigate new monolayer CrI$_{3}$ phases. Our structural predictions identify two novel polymorphs with Cm and $P2/m$ space groups, both of which are dynamically stable and exhibit significantly higher $T_{\rm C}$ values of 145 K and 81 K, respectively. Electronic property calculations show that the Cm phase is a half-metal, while the $P2/m$ phase is semiconducting with a bandgap of 0.14 eV. Monte Carlo simulations attribute these enhanced $T_{\rm C}$ values to a notable increase in exchange interactions. These findings expand the known phase space of CrI$_{3}$ and provide a promising pathway for designing high-temperature 2D ferromagnets for next-generation spintronic applications.
|
Received: 25 March 2025
Revised: 13 May 2025
Accepted manuscript online: 22 May 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
| |
63.20.dk
|
(First-principles theory)
|
| |
75.50.Pp
|
(Magnetic semiconductors)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1610000), the National Natural Science Foundation of China (Grant Nos. 12304036 and 12304265), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515010071), and the Fundamental Research Funds for the Central Universities to Sun Yat-sen University (Grant No. 23xkjc016). |
Corresponding Authors:
Yanan Wang, Yunwei Zhang
E-mail: wangyanan@sslab.org.cn;zhangyunw@mail.sysu.edu.cn
|
Cite this article:
Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚) Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K 2025 Chin. Phys. B 34 117105
|
[1] Ma Q, Ren G, Xu K and Ou J Z 2021 Adv. Opt. Mater. 9 2001313 [2] Gonzalez-Herrero H, G omez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y and Brihuega I 2016 Science 352 437 [3] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [4] Liu H, Sun J T, Fu H X, Sun P J, Feng Y P and Meng S 2017 ChemPhysChem 18 1916 [5] Ahn E C 2020 npj 2D Mater. Appl. 4 17 [6] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270 [8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [9] Ju H, Lee Y, Kim K T, Choi I H, Roh C J, Son S, Park P, Kim J H, Jung T S, Kim J H, Kim K H, Park J G and Lee J S 2021 Nano Lett. 21 5126 [10] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601 [11] Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X and Zhu X 2021 Nano Lett. 21 3511 [12] Cheng M, Hu Q, Huang Y, Ding C, Qiang X B, Hua C, Fang H, Lu J, Peng Y, Yang J, Xi C, Pi L, Watanabe K, Taniguchi T, Lu H Z, Novoselov K S, Lu Y and Zheng Y 2024 Nat. Phys. 20 1973 [13] Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391 [14] Jain A and McGaughey A J H 2015 Sci. Rep. 5 8501 [15] Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P and Wang H 2015 Nano Res. 8 3651 [16] Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S and Yang H 2023 Chem. Rev. 123 11230 [17] Kumar R, Joanni E, Singh R K, Singh D P and Moshkalev S A 2018 Prog. Energy Combust. Sci. 67 115 [18] Jiang X F, Weng Q, Wang X B, Li X, Zhang J, Golberg D and Bando Y 2015 J. Mater. Sci. Technol. 31 589 [19] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584 [20] Wu Z W, Yu J and Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750 [21] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457 [22] Dillon Jr J F and Olson C E 1965 J. Appl. Phys. 36 1259 [23] Li P, Wang C, Zhang J, Chen S, Guo D, Ji W and Zhong D 2020 Sci. Bull. 65 1064 [24] Hou Y, Kim J and Wu R 2019 Sci. Adv. 5 eaaw1874 [25] Zhai B X, Du J, Shen C H, Wang T X, Peng Y T, Zhang Q M and Xia C X 2019 Phys. Rev. B 100 195307 [26] Hidalgo-Sacoto R, Gonzalez R I, Vogel E E, Allende S, Mella J D, Cardenas C, Troncoso R E and Munoz F 2020 Phys. Rev. B 101 205425 [27] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401 [28] Lu Y, Fei R X, Lu X B, Zhu L H, Wang L and Yang L 2020 ACS Appl. Mater. Interfaces 12 6243 [29] Margalit G, Yan B and Oreg Y 2020 Phys. Rev. B 102 024515 [30] Su T, Lohmann M, Li J X, Xu Y D, Niu B, Alghamdi M, Zhou H D, Cui Y T, Cheng R and Taniguchi T 2020 2D Mater. 7 045006 [31] Wu Z, Shen Z, Xue Y and Song C 2022 Phys. Rev. Mater. 6 014011 [32] Luo X Y, Yang J H, Liu H Y, Wu X J, Wang Y C, Ma Y M, Wei S H, Gong X G and Xiang H J 2011 J. Am. Chem. Soc. 133 16285 [33] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 [34] Wang Y C, Miao M S, Lv J, Zhu L, Yin K T, Liu H Y and Ma Y M 2012 J. Chem. Phys. 137 224110 [35] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 [36] Miao N and Sun Z 2022 WIREs Comput. Mol. Sci. 12 e1545 [37] Gao P, Gao B, Lu S, Liu H, Lv J, Wang Y and Ma Y 2022 Front. Phys. 17 23203 [38] Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306 [39] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519 [40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [44] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [45] Wu Z W, Yu J and Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750 [46] Lado J L and Fernandez-Rossier J 2017 2D Mater. 4 035002 [47] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [48] Persson K A https://www.osti.gov/servlets/purl/1270385[2025-05-12] [49] Persson K A https://www.osti.gov/servlets/purl/1190621[2025-05-12] [50] Persson K A https://www.osti.gov/servlets/purl/1277364[2025-05-12] [51] Persson K A https://www.osti.gov/servlets/purl/1200591[2025-05-12] [52] Lee S Y, Hwang J Y, Park J, Nandadasa C N, Kim Y, Bang J, et al. 2020 Nat. Commun. 11 1526 [53] Xue F, Hou Y S, Wang Z and Wu R Q 2019 Phys. Rev. B 100 224429 [54] Huang C X, Feng J S, Wu F, Ahmed D, Huang B, Xiang H J, Deng K M and Kan E J 2018 J. Am. Chem. Soc. 140 11519 [55] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|