Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 113101    DOI: 10.1088/1674-1056/adf82c
RAPID COMMUNICATION Prev   Next  

Precision calculation of 4,6,8He isotope shifts

Xiao-Qiu Qi(戚晓秋)1,†, Xing-Han Dong(董星汉)1, Fang-Fei Wu(吴芳菲)2,‡, Zong-Chao Yan(严宗朝)4,3, Li-Yan Tang(唐丽艳)3, Zhen-Xiang Zhong(钟振祥)5, and Ting-Yun Shi(史庭云)3
1 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 College of Sciences, China Jiliang University, Hangzhou 310018, China;
3 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
4 Department of Physics, University of New Brunswick, New Brunswick E3B 5A3, Canada;
5 Center for Theoretical Physics, Hainan University, Haikou 570228, China
Abstract  Standard perturbation theory is employed to calculate the mass shifts of the $2\,^1\!{\rm S}_0$-$2\,^3\!{\rm S}_1$ and $2\,^3\!{\rm S}_1$-$2\,^3\!{\rm P}_{\rm J}$ transitions for $^{4,6,8}{\rm He}$. High-precision results are obtained for the mass shifts in the isotope pairs $^6{\rm He}$-$^4{\rm He}$ and $^8{\rm He}$-$^4{\rm He}$, with uncertainties below 1 part per million (ppm). Our analysis provides a complete set of isotope-shift results and systematically examines their sensitivity to nuclear charge-radius differences. Once experimental measurements reach a precision comparable to that of the calculated mass shifts, the squared differences of nuclear charge radii can be determined with an accuracy of approximately $0.4\%$-$0.6\%$, representing an order-of-magnitude improvement over current values.
Keywords:  isotope shifts      nuclear charge radius      atomic spectroscopy      quantum electrodynamic  
Received:  19 June 2025      Revised:  18 July 2025      Accepted manuscript online:  06 August 2025
PACS:  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
  31.30.jf (QED calculations of level energies, transition frequencies, fine structure intervals (radiative corrections, self-energy, vacuum polarization, etc.))  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12204412, 12274423, 12174402, 12393821, and 12004124), as well as by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100 and XDB0920101). Z. C. Y. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. All calculations were performed on the APM-Theoretical Computing Cluster (APM-TCC).
Corresponding Authors:  Xiao-Qiu Qi, Fang-Fei Wu     E-mail:  xqqi@zstu.edu.cn;fangfeiwu@cjlu.edu.cn
About author:  2025-113101-251071.pdf

Cite this article: 

Xiao-Qiu Qi(戚晓秋), Xing-Han Dong(董星汉), Fang-Fei Wu(吴芳菲), Zong-Chao Yan(严宗朝), Li-Yan Tang(唐丽艳), Zhen-Xiang Zhong(钟振祥), and Ting-Yun Shi(史庭云) Precision calculation of 4,6,8He isotope shifts 2025 Chin. Phys. B 34 113101

[1] Yan Z C and Drake G W F 1995 Phys. Rev. Lett. 74 4791
[2] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[3] Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403
[4] Cancio Pastor P, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V A and Pachucki K 2012 Phys. Rev. Lett. 108 143001
[5] Burt E A, Taghavi-Larigani S and Tjoelker R L 2009 Phys. Rev. A 79 062506
[6] Kato K, Skinner T D G and Hessels E A 2018 Phys. Rev. Lett. 121 143002
[7] Wang L, Liu T, Yang W and Yan Z C 2023 Chin. Phys. B 32 033102
[8] Shiner D, Dixson R and Vedantham V 1995 Phys. Rev. Lett. 74 3553
[9] Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E and Wieman C E 1997 Science 275 1759
[10] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
[11] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802
[12] Geiger R and Trupke M 2018 Phys. Rev. Lett. 120 043602
[13] Frugiuele C, Fuchs E, Perez G and Schlaffer M 2017 Phys. Rev. D 96 015011
[14] Berengut J C, Budker D, Delaunay C, Flambaum V V, Frugiuele C, Fuchs E, Grojean C, Harnik R, Ozeri R, Perez G and Soreq Y 2018 Phys. Rev. Lett. 120 091801
[15] Berengut J C, Delaunay C, Geddes A and Soreq Y 2020 Phys. Rev. Research 2 043444
[16] Yue H L, Shao H, Chen Z, Fang P C, Zeng M Y, Zhang B L, Huang Y, Li J G, Chen Q F, Guan H and Gao K L 2023 Chin. Phys. Lett. 40 093202
[17] Patkóš V c v, Yerokhin V A and Pachucki K 2016 Phys. Rev. A 94 052508
[18] Patkóš V c v, Yerokhin V A and Pachucki K 2017 Phys. Rev. A 95 012508
[19] Patkóš V c v, Yerokhin V A and Pachucki K 2019 Phys. Rev. A 100 042510
[20] Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H and Gao K L 2020 Phys. Rev. Lett. 125 183002
[21] Patkóš V c v, Yerokhin V A and Pachucki K 2021 Phys. Rev. A 103 042809
[22] Patkóš V c v, Yerokhin V A and Pachucki K 2021 Phys. Rev. A 103 012803
[23] Pachucki K and Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 031206
[24] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K and Hu S M 2017 Phys. Rev. Lett. 118 063001
[25] Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerl M D and Vassen W 2018 Nat. Phys. 14 1132
[26] van der Werf Y, Steinebach K, Jannin R, Bethlem H and Eikema K 2025 Science 388 850
[27] Schuhmann K, Fernandes L M P, Nez F, et al. 2025 Science 388 854
[28] Muli S S L, Richardson T R and Bacca S 2025 Phys. Rev. Lett. 134 032502
[29] Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y and Zhong Z X 2025 Phys. Rev. Res. 7 L022020
[30] Pachucki K, Patkóš V c v and Yerokhin V A 2024 Phys. Rev. A 110 062806
[31] Wen J L, Tang J D, Lv Y N, Sun Y R, Zou C L, Dong J F and Hu S M 2025 Sci. Adv. 11 eadu9796
[32] Zhukov M, Danilin B, Fedorov D, Bang J, Thompson I and Vaagen J 1993 Phys. Rep. 231 151
[33] Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C and Yan Z C 2013 Rev. Mod. Phys. 85 1383
[34] Frederico T, Delfino A, Tomio L and Yamashita M 2012 Prog. Part. Nucl. Phys. 67 939
[35] Tanihata I, Savajols H and Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215
[36] Zhang P P, Zhong Z X, Yan Z C and Shi T Y 2015 Chin. Phys. B 24 033101
[37] Yerokhin V A and Pachucki K 2010 Phys. Rev. A 81 022507
[38] Drake G W, Nörtershäuser W and Yan Z C 2005 Can. J. Phys. 83 311
[39] Pachucki K and Moro A M 2007 Phys. Rev. A 75 032521
[40] Stetcu I, Quaglioni S, Friar J L, Hayes A C and Navrátil P 2009 Phys. Rev. C 79 064001
[41] Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C and Levick A P 1994 Phys. Rev. A 49 207
[42] Yan Z C and Drake G W F 2000 Phys. Rev. A 61 022504
[1] Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations
Guo-Qing Peng(彭国庆), Kai Wang(王凯), Jun Yan(颜君), and Wei Kang(康炜). Chin. Phys. B, 2025, 34(5): 053101.
[2] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[3] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[4] Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2024, 33(2): 020315.
[5] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[6] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[7] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[8] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[9] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[10] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[11] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[12] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[13] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[14] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[15] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
No Suggested Reading articles found!