|
|
|
Precision calculation of 4,6,8He isotope shifts |
| Xiao-Qiu Qi(戚晓秋)1,†, Xing-Han Dong(董星汉)1, Fang-Fei Wu(吴芳菲)2,‡, Zong-Chao Yan(严宗朝)4,3, Li-Yan Tang(唐丽艳)3, Zhen-Xiang Zhong(钟振祥)5, and Ting-Yun Shi(史庭云)3 |
1 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 College of Sciences, China Jiliang University, Hangzhou 310018, China; 3 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 4 Department of Physics, University of New Brunswick, New Brunswick E3B 5A3, Canada; 5 Center for Theoretical Physics, Hainan University, Haikou 570228, China |
|
|
|
|
Abstract Standard perturbation theory is employed to calculate the mass shifts of the $2\,^1\!{\rm S}_0$-$2\,^3\!{\rm S}_1$ and $2\,^3\!{\rm S}_1$-$2\,^3\!{\rm P}_{\rm J}$ transitions for $^{4,6,8}{\rm He}$. High-precision results are obtained for the mass shifts in the isotope pairs $^6{\rm He}$-$^4{\rm He}$ and $^8{\rm He}$-$^4{\rm He}$, with uncertainties below 1 part per million (ppm). Our analysis provides a complete set of isotope-shift results and systematically examines their sensitivity to nuclear charge-radius differences. Once experimental measurements reach a precision comparable to that of the calculated mass shifts, the squared differences of nuclear charge radii can be determined with an accuracy of approximately $0.4\%$-$0.6\%$, representing an order-of-magnitude improvement over current values.
|
Received: 19 June 2025
Revised: 18 July 2025
Accepted manuscript online: 06 August 2025
|
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
| |
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
| |
31.30.jf
|
(QED calculations of level energies, transition frequencies, fine structure intervals (radiative corrections, self-energy, vacuum polarization, etc.))
|
| |
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12204412, 12274423, 12174402, 12393821, and 12004124), as well as by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100 and XDB0920101). Z. C. Y. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. All calculations were performed on the APM-Theoretical Computing Cluster (APM-TCC). |
Corresponding Authors:
Xiao-Qiu Qi, Fang-Fei Wu
E-mail: xqqi@zstu.edu.cn;fangfeiwu@cjlu.edu.cn
|
| About author: 2025-113101-251071.pdf |
Cite this article:
Xiao-Qiu Qi(戚晓秋), Xing-Han Dong(董星汉), Fang-Fei Wu(吴芳菲), Zong-Chao Yan(严宗朝), Li-Yan Tang(唐丽艳), Zhen-Xiang Zhong(钟振祥), and Ting-Yun Shi(史庭云) Precision calculation of 4,6,8He isotope shifts 2025 Chin. Phys. B 34 113101
|
[1] Yan Z C and Drake G W F 1995 Phys. Rev. Lett. 74 4791 [2] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [3] Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403 [4] Cancio Pastor P, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V A and Pachucki K 2012 Phys. Rev. Lett. 108 143001 [5] Burt E A, Taghavi-Larigani S and Tjoelker R L 2009 Phys. Rev. A 79 062506 [6] Kato K, Skinner T D G and Hessels E A 2018 Phys. Rev. Lett. 121 143002 [7] Wang L, Liu T, Yang W and Yan Z C 2023 Chin. Phys. B 32 033102 [8] Shiner D, Dixson R and Vedantham V 1995 Phys. Rev. Lett. 74 3553 [9] Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E and Wieman C E 1997 Science 275 1759 [10] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801 [11] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802 [12] Geiger R and Trupke M 2018 Phys. Rev. Lett. 120 043602 [13] Frugiuele C, Fuchs E, Perez G and Schlaffer M 2017 Phys. Rev. D 96 015011 [14] Berengut J C, Budker D, Delaunay C, Flambaum V V, Frugiuele C, Fuchs E, Grojean C, Harnik R, Ozeri R, Perez G and Soreq Y 2018 Phys. Rev. Lett. 120 091801 [15] Berengut J C, Delaunay C, Geddes A and Soreq Y 2020 Phys. Rev. Research 2 043444 [16] Yue H L, Shao H, Chen Z, Fang P C, Zeng M Y, Zhang B L, Huang Y, Li J G, Chen Q F, Guan H and Gao K L 2023 Chin. Phys. Lett. 40 093202 [17] Patkóš V c v, Yerokhin V A and Pachucki K 2016 Phys. Rev. A 94 052508 [18] Patkóš V c v, Yerokhin V A and Pachucki K 2017 Phys. Rev. A 95 012508 [19] Patkóš V c v, Yerokhin V A and Pachucki K 2019 Phys. Rev. A 100 042510 [20] Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H and Gao K L 2020 Phys. Rev. Lett. 125 183002 [21] Patkóš V c v, Yerokhin V A and Pachucki K 2021 Phys. Rev. A 103 042809 [22] Patkóš V c v, Yerokhin V A and Pachucki K 2021 Phys. Rev. A 103 012803 [23] Pachucki K and Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 031206 [24] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K and Hu S M 2017 Phys. Rev. Lett. 118 063001 [25] Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerl M D and Vassen W 2018 Nat. Phys. 14 1132 [26] van der Werf Y, Steinebach K, Jannin R, Bethlem H and Eikema K 2025 Science 388 850 [27] Schuhmann K, Fernandes L M P, Nez F, et al. 2025 Science 388 854 [28] Muli S S L, Richardson T R and Bacca S 2025 Phys. Rev. Lett. 134 032502 [29] Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y and Zhong Z X 2025 Phys. Rev. Res. 7 L022020 [30] Pachucki K, Patkóš V c v and Yerokhin V A 2024 Phys. Rev. A 110 062806 [31] Wen J L, Tang J D, Lv Y N, Sun Y R, Zou C L, Dong J F and Hu S M 2025 Sci. Adv. 11 eadu9796 [32] Zhukov M, Danilin B, Fedorov D, Bang J, Thompson I and Vaagen J 1993 Phys. Rep. 231 151 [33] Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C and Yan Z C 2013 Rev. Mod. Phys. 85 1383 [34] Frederico T, Delfino A, Tomio L and Yamashita M 2012 Prog. Part. Nucl. Phys. 67 939 [35] Tanihata I, Savajols H and Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215 [36] Zhang P P, Zhong Z X, Yan Z C and Shi T Y 2015 Chin. Phys. B 24 033101 [37] Yerokhin V A and Pachucki K 2010 Phys. Rev. A 81 022507 [38] Drake G W, Nörtershäuser W and Yan Z C 2005 Can. J. Phys. 83 311 [39] Pachucki K and Moro A M 2007 Phys. Rev. A 75 032521 [40] Stetcu I, Quaglioni S, Friar J L, Hayes A C and Navrátil P 2009 Phys. Rev. C 79 064001 [41] Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C and Levick A P 1994 Phys. Rev. A 49 207 [42] Yan Z C and Drake G W F 2000 Phys. Rev. A 61 022504 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|