ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity |
Yu-Xin Shu(树宇鑫)1, Xiao-San Ma(马小三)1, Xian-Shan Huang(黄仙山)2, Mu-Tian Cheng(程木田)1,†, and Jun-Bo Han(韩俊波)3 |
1 School of Electrical Engineering&Information, Anhui University of Technology, Maanshan 243002, China; 2 School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China; 3 Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We investigate theoretically single photon transport in one-dimensional waveguide coupled to a pair of cavities, which are denoted by the first cavity and the auxiliary cavity. Two cases with no atom and one atom embedded in the first cavity are discussed. The Fano dips in the transmission spectrum and locations of transparency window are calculated. When no atom is embedded in the first cavity, there exists a transparency window under the condition that the first cavity and the auxiliary cavity are not resonant. The locations of the transparency window and Fano line type depend strongly on the eigen frequency of the auxiliary cavity and the coupling strength between the auxiliary cavity and the waveguide. When one atom is embedded in the first cavity, we show that the transparency window exists even though the first cavity, the atom and the auxiliary cavity are resonant. The Fano line type is strongly dependent on the eigen frequency of the auxiliary cavity and the coupling strength. Our results have potential applications in design of quantum devices at the level of single photon, such as single photon switch and single photon routers.
|
Received: 15 January 2021
Revised: 03 March 2021
Accepted manuscript online: 24 May 2021
|
PACS:
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774262 and 11975023). |
Corresponding Authors:
Mu-Tian Cheng
E-mail: mtcheng@ahut.edu.cn
|
Cite this article:
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波) Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity 2021 Chin. Phys. B 30 104204
|
[1] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402 [2] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601 [3] Goban A, Hung C L, Hood J D, Yu S P, Muniz J A, Painter O and Kimble H J 2015 Phys. Rev. Lett. 115 063601 [4] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P and Gérard J M 2010 Nat. Photon. 4 174 [5] Astafiev O, Zagoskin A M, Abdumalikov A A, Jr, Pashkin Yu A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840 [6] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601 [7] Mirhosseini M, Kim E, Zhang X, Sipahigil A, Dieterle P B, Keller A J, Asenjo-Garcia A, Chang D E and Painter O 2019 Nature 569 692 [8] Javadi A, Söllner I, Arcari M, Lindskov Hansen S, Midolo L, Mahmoodian S, Kiršanskė G, Pregnolato T, Lee E H, Song J D, Stobbe S and Lodahl P 2015 Nat. Commun. 6 8655 [9] Sipahigil A, Evans R E, Sukachev D D, Burek M J, Borrégaard J, Bhaskar M K, Nguyen C T, Pacheco J L, Atikian H A, Meuwly C, Camacho R M, Jelezko F, Bielejec E, Park H, Loncar M and Lukin M D 2016 Science 354 847 [10] Shen J T and Fan T 2005 Opt. Lett. 30 2001 [11] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 [12] Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110 [13] Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807 [14] Neumeier L, Leib M and Hartmann M J 2013 Phys. Rev. Lett. 111 063601 [15] Zhang X, Xia X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 28 114207 [16] Yan W B, Ni W Y, Zhang J, Zhang F Y and Fan H 2018 Phys. Rev. A 98 043852 [17] Wang X, Shui T, Li L, Li X, Wu Z and Yang W X 2020 Laser Phys. Lett. 17 065201 [18] Shen J T and Fan S 2009 Phys. Rev. A 79 023837 [19] Cheng M T and Song Y Y 2012 Opt. Lett. 37 978 [20] Yan C H and Wei L F 2012 J. Appl. Phys. 112 054304 [21] Yan G A, Lu H and Wang Y P 2020 Int. J. Theor. Phys. 59 632 [22] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G and Dayan B 2014 Science 345 903 [23] Yan W B and Fan H 2014 Sci. Rep. 4 4820 [24] Li X and Wei L F 2015 Phys. Rev. A 92 063836 [25] Liao Z, Nha H and Zubairy M S 2016 Phys. Rev. A 93 033851 [26] Xiao H, Wang L, Yuan L and Chen X 2020 ACS Photon. 7 2010 [27] Ko M C, Kim N C, Choe H, Ri S R, Ryom J S, Ri C W and Kim U H 2020 Plasmonic 15 271 [28] Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S and Twamley J 2014 Phys. Rev. A 90 043802 [29] Scheucher M, Hilico A, Will E, Volz J and Rauschenbeutel A 2016 Science 354 1577 [30] Yan C H and Wei L F 2015 Opt. Express 92 10374 [31] Liao Z, Nha H and Zubairy M S 2016 Phys. Rev. A 94 053842 [32] Cheng M T, Xu J and Agarwal G S 2017 Phys. Rev. A 95 053807 [33] Song G Z, Munro E, Nie W, Kwek L C, Deng F G and Long G L 2018 Phys. Rev. A 98 023814 [34] Li T, Miranowicz A, Hu X, Xia K and Nori F 2018 Phys. Rev. A 97 062318 [35] Ko M C, Kim N C, Choe H, Ri S R, Ryom J S, Ri C W and Kim U H 2020 Plasmonic 15 271 [36] Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. A 101 063814 [37] Mukhopadhyay D and Agarwal G S 2019 Phys. Rev. A 100 013812 [38] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205 [39] Sinha K, Meystre P, Goldschmidt E A, Fatemi F K, Rolston S L and Solano P 2020 Phys. Rev. Lett. 124 043603 [40] Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D and Hoi I C 2019 Phys. Rev. Lett. 119 233602 [41] Mahmoodian S, Calajó G, Chang D E, Hammerer K and Sorensen A S 2020 Phys. Rev. X 10 031011 [42] Chang D E, Douglas J S, Gonzalez-Tudela A, Hung C L and Kimble H J 2018 Rev. Mod. Phys. 90 031002 [43] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 0210012 [44] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1 [45] Liao Z, Zeng X, Nha H and Zubairy M S 2016 Phys. Scr. 91 063004 [46] Liu Y C, Luan X, Li H K, Gong Q, Wong C W and Xiao Y F 2014 Phys. Rev. Lett. 112 213602 [47] Chen H J 2018 Photon. Res. 6 1171 [48] Chen H J, Hou B C and Yang J Y 2020 OSA Continuum 3 929 [49] Lin C F 1997 J. Opt. Soc. Am. B 14 175 [50] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56 [51] Li J, Ding C and Wu Y 2020 Phys. Rev. A 71 016201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|