Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics |
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏)†, and Sheng-Mei Zhao(赵生妹)‡ |
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We propose a scheme to fast prepare the three-qubit W state via superadiabatic-based shortcuts in a circuit quantum electrodynamics (circuit QED) system. We derive the effective Hamiltonian to suppress the unwanted transitions between different eigenstates by counterdiabatic driving, and obtain the W state with high-fidelity based on the superadiabatic passage. The numerical simulation results demonstrate that the proposed scheme can accelerate the evolution, and is more efficient than that with the adiabatic passage. In addition, the proposed scheme is robust to the decoherence caused by the resonator decay and qubit relaxation, and does not need additional parameters, which could be feasible in experiment.
|
Received: 15 October 2020
Revised: 21 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871234) and sponsored by NUPTSF (Grant Nos. NY218097 and NY220178). |
Corresponding Authors:
†Corresponding author. E-mail: xupengqh201461@163.com ‡Corresponding author. E-mail: zhaosm@njupt.edu
|
Cite this article:
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹) Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics 2021 Chin. Phys. B 30 030307
|
1 Chen X, Lizuain I, Ruschhaupt A, Guery-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003 2 Zhou Y L,Wang Y M, Liang L M and Li C Z 2009 Phys. Rev. A 79 044304 3 Ruschhaupt A, Chen X, Alonso D and Muga J G 2012 New J. Phys. 14 093040 4 Ye L, Yu L B and Guo G C 2005 Phys. Rev. A 72 034304 5 Lu M, Xia Y, Shen L T, Song J and An N B 2014 Phys. Rev. A 89 012326 6 Makarov D N 2018 Phys. Rev. E 97 042203 7 Lu M, Xia Y, Shen L T and Song J 2014 Laser Phys. 24 105201 8 Chen Y H, Xia Y, Chen Q Q and Song J 2014 Phys. Rev. A 89 033856 9 Liu Y X, You J Q, Wei L F, Sun C P and Nori F 2005 Phys. Rev. Lett. 95 087001 10 Wei L F, Johansson J R, Cen L X, Ashhab S and Nori F 2008 Phys. Rev. Lett. 100 113601 11 Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902 12 Lv X Y, Zhu G L, Zheng L L and Wu Y 2018 Phys. Rev. A 97 033807 13 Liu Y X, Wei L F and Nori F 2012 Europhys. Lett. 67 941 14 Biamonte J D, Morales M E S and Koh D E 2020 Phys. Rev. A 101 012349 15 Zhao Y J, Liu Y L, Liu Y X and Nori F 2015 Phys. Rev. A 91 053820 16 Xue Z Y, Gong M, Liu J, Hu Y, Zhu S L and Wang Z D 2015 Sci. Rep. 5 12233 17 Schaff J F, Song X L, Vignolo P and Labeyrie G 2010 Phys. Rev. A 82 033430 18 Maeda H, Gurian J H, Norum D V L and Gallagher T F 2006 Phys. Rev. Lett. 96 073002 19 Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308 20 Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323 21 Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 22 Vazirani U and Vidick T 2014 Phys. Rev. Lett. 113 140501 23 Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Applied 11 034053 24 Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 25 Curty M, Azuma K and Lo H K 2019 npj Quantum Inf. 5 64 26 Ye T Y 2015 Quantum Inf. Process. 14 1487 27 Gao G 2010 Opt. Commun. 283 2288 28 Horn K P, Reiter F, Lin Y, Leibfried D and Koch C P 2018 New J. Phys. 20 123010 29 Liu S, Ran D, Kang Y H, Shi Z C, Song J and Xia Y 2020 Ann. Phys. (Berlin) 532 2000002 30 Majumdar A, Rundquist A, Bajcsy M and Vuckovic J 2012 Phys. Rev. B 86 045315 31 Li M M2018 Quantum Information Processing with Circuit Quantum Electrodynamics (PhD Dissertation) (Nanjing: Nanjing University)(in Chinese) 32 Petiziol F, Dive B, Carretta S, Mannella R, Mintert F and Wimberger S 2019 Phys. Rev. A 99 042315 33 Hou K, Bao D Q, Zhu C J and Yang Y P 2019 Laser Phys. 29 015201 34 Yu W R and Ji X 2019 Acta Phys. Sin. 68 030302 (in Chinese) 35 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 36 Liu Y, Zhao Y, Lyngso J, You S, Wilson W L, Tu H and Boppart S A 2015 J. Light. Techol. 33 1814 37 Lu M and Chen Q Q 2018 Laser Phys. Lett. 15 055207 38 Xu P, Yang X C, Mei F and Xue Z Y 2016 Sci. Rep. 6 18695 39 Wang Z, Xia Y, Chen Y H and Song J 2016 Eur. Phys. J. D 70 162 40 Ibanez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett 109 100403 41 Li F G, Bao W S, Zhang S, Wang X, Huang H L, Li T and Ma B W 2018 Chin. Phys. B 27 010308 42 Vepsalainen A, Danilin S and Paraoanu G S 2018 Quantum Sci. Technol. 3 024006 43 Ban Y, Jiang L X, Li Y C, Wang L J and Chen X 2018 Opt. Express 26 031137 44 Kolbl J, Barfuss A, Kasperczyk M S, Thiel L, Clerk A A, Ribeiro H and Maletinsky P 2019 Phys. Rev. Lett. 122 090502 45 Yu W R and Ji X 2019 Quantum Inf. Process. 18 247 46 Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2016 Phys. Rev. A 94 052311 47 Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306 48 Yang X Q, Huang D Y, Xue P, Gong Y Y, Wu J L and Ji X 2017 Laser Phys. Lett. 14 055209 49 Spillane S M, Kippenberg T J, Painter O J and Vahala K J 2003 Phys. Rev. Lett. 91 043902 50 Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817 51 Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503 52 Kang Y H, Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 36737 53 Bosman S J, Gely M F, Singh V, Bruno A, Bothner D and Steele G A 2017 npj Quantum Inf. 3 46 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|