|
|
|
A time-dependent generalized Floquet calculation of the laser-induced lineshape in attosecond transient absorption spectra |
| Xu-Han Wang(王旭涵), Di Zhao(赵迪)†, and Peng-Bo Li(李蓬勃) |
| Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
|
|
Abstract We introduce a time-dependent generalized Floquet (TDGF) approach to calculate attosecond transient absorption spectra of helium atoms subjected to the combination of an attosecond extreme ultraviolet (XUV) pulse and a delayed few-cycle infrared (IR) laser pulse. This TDGF approach provides a Floquet understanding of the laser-induced change of resonant absorption lineshape. It is analytically demonstrated that the phase shift of the time-dependent dipole moment that results in the lineshape changes consists of two components, the adiabatic laser-induced phase (LIP) due to the IR-induced Stark shifts of adiabatic Floquet states and the non-adiabatic phase correction due to the non-adiabatic IR-induced coupling between adiabatic Floquet states. Comparisons of the spectral lineshape calculated based on the TDGF approach with the results obtained with the LIP model [Phys. Rev. A 88 033409 (2013)] and the rotating-wave approximation (RWA) are presented for several typical cases, demonstrating that TDGF universally and accurately captures IR-induced lineshape changes. It is suggested that the LIP model works as long as the generalized adiabatic theorem [PRX Quantum 2 030302 (2021)] holds, and the RWA works when the higher-order IR-coupling effect in the formation of adiabatic Floquet states is neglectable.
|
Received: 22 July 2025
Revised: 02 September 2025
Accepted manuscript online: 17 September 2025
|
|
PACS:
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
| |
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. W2411002 and 12375018). |
Corresponding Authors:
Di Zhao
E-mail: d.zhao@mail.xjtu.edu.cn
|
Cite this article:
Xu-Han Wang(王旭涵), Di Zhao(赵迪), and Peng-Bo Li(李蓬勃) A time-dependent generalized Floquet calculation of the laser-induced lineshape in attosecond transient absorption spectra 2025 Chin. Phys. B 34 113201
|
[1] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature 466 739 [2] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T and Chang Z 2018 Phys. Rev. A 97 031407 [3] Cao W, Warrick E R, Neumark D M and Leone S R 2016 New J. Phys. 18 013041 [4] Wang X, Chini M, Cheng Y,Wu Y, Tong X M and Chang Z 2013 Phys. Rev. A 87 063413 [5] Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C D, Burgdörfer J and Pfeifer T 2016 Science 354 738 [6] Chini M, Zhao B, Wang H, Cheng Y, Hu S X and Chang Z 2012 Phys. Rev. Lett. 109 073601 [7] Chen S, Schafer K J and Gaarde M B 2012 Opt. Lett. 37 2211 [8] Holler M, Schapper F, Gallmann L and Keller U 2011 Phys. Rev. Lett. 106 123601 [9] Sabbar M, Timmers H, Chen Y J, Pymer A K, Loh Z H, Sayres S G, Pabst S, Santra R and Leone S R 2017 Nat. Phys. 13 472 [10] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716 [11] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madronero J, Martín F, Pfeifer T 2014 Nature 516 374 [12] Bækhøj J E, Lévêque C and Madsen L B 2018 Phys. Rev. Lett. 121 023203 [13] Rørstad J J, Ravn N S W, Yue L and Madsen L B 2018 Phys. Rev. A 98 053401 [14] Warrick E R, Bækhøj J E, Cao W, Fidler A P, Jensen F, Madsen L B, Leone S R and Neumark D M 2017 Chem. Phys. Lett. 683 408 [15] Cheng Y, Chini M,Wang X, González-Castrillo A, Palacios A, Argenti L, Martín F and Chang Z 2016 Phys. Rev. A 94 023403 [16] Liao C T, Li X, Haxton D J, Rescigno T N, Lucchese R R, McCurdy C W and Sandhu A 2017 Phys. Rev. A 95 043427 [17] Bækhøj J E, Yue L, Madsen L B 2015 Phys. Rev. A 91 043408 [18] Garg M, Martin-Jimenez A, Pisarra M, Luo Y, Martín F and Kern K 2021 Nat. Photon. 16 196 [19] Golubev N V, Vaníček J and Kuleff A I 2021 Phys. Rev. Lett. 127 123001 [20] Shi X, Wu Y, Wang J, Kimberg V and Zhang S 2020 Phys. Rev. A 101 023401 [21] Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M and Leone S R 2014 Science 346 1348 [22] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L and Keller U 2016 Science 353 916 [23] Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N and Goulielmakis E 2017 Science 357 1134 [24] Seres E, Seres J, Serrat C and Namba S 2016 Phys. Rev. B 94 165125 [25] Hui D, Alqattan H, Yamada S, Pervak V, Yabana K and Hassan M Th 2021 Nat. Photon. 16 33 [26] Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H T, Guggenmos A, Huang M Y, Zürch M, Schafer K J, Neumark D M, Gaarde M B and Leone S R 2020 Phys. Rev. Lett. 124 207401 [27] Liu Z, Wang F, Sheng X, Wang J, Jiang L and Wei Z 2021 Phys. Rev. B 104 064103 [28] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [29] Calegari F, Sansone G, Stagira S, Vozzi C and NIsoli M 2016 J. Phys. B 49 062001 [30] Bengtsson S, Larsen E W, Kroon D, Camp S, Miranda M, Arnold C L, L’Huillier A, Schafer K J, Gaarde M B, Rippe L, et al. 2017 Nat. Photonics 11 252 [31] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [32] Gallmann L, Cirelli C and Keller U 2012 Annu. Rev. Phys. Chem. 63 447 [33] Yuan G, Jiang S, Wang Z, Hua W, Yu C, Jin C and Lu R 2019 Struct. Dyn. 6 054102 [34] Rørstad J J, Bækhøj J E and Madsen L B 2017 Phys. Rev. A 96 013430 [35] Wu M, Chen S, Camp S, Schafer K J and Gaarde M B 2016 J. Phys. B 49 062003 [36] Reduzzi M, Hummert J, Dubrouil A, Calegari F, Nisoli F, Frassetto F, Poletto L, Chen S,Wu M, Gaarde M B, Schafer K and Sansone G 2015 Phys. Rev. A 92 033408 [37] Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S I and Chang Z 2013 Sci. Rep. 3 1105 [38] Chen S, Wu M, Gaarde M B and Schafer K J 2013 Phys. Rev. A 88 033409 [39] Stooß V, Cavaletto S M, Donsa S, Blättermann A, Birk P, Keitel C H, B?rezinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett. 121 173005 [40] Liu Z, Ott C, Cavaletto S M, Harman Z, Keitel C H and Pfeifer T 2014 New J. Phys. 16 093005 [41] Dodin A and Brumer P 2021 PRX Quantum 2 030302 [42] Gaarde M B, Buth C, Tate J L and Schafer K J 2011 Phys. Rev. A 83 013419 [43] Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R and Schafer K J 2012 Phys. Rev. A 86 063408 [44] Chu S I and Telnov D A 2004 Phys. Rep. 390 1 [45] Li P C, Laughlin C and Chu S I 2014 Phys. Rev. A 89 023431 [46] Chu X, Chu S I and Laughlin C 2001 Phys. Rev. A 64 013406 [47] Tong X M and Chu S I 1997 Chem. Phys. 217 119 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|