Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 113201    DOI: 10.1088/1674-1056/ae07c0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A time-dependent generalized Floquet calculation of the laser-induced lineshape in attosecond transient absorption spectra

Xu-Han Wang(王旭涵), Di Zhao(赵迪)†, and Peng-Bo Li(李蓬勃)
Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We introduce a time-dependent generalized Floquet (TDGF) approach to calculate attosecond transient absorption spectra of helium atoms subjected to the combination of an attosecond extreme ultraviolet (XUV) pulse and a delayed few-cycle infrared (IR) laser pulse. This TDGF approach provides a Floquet understanding of the laser-induced change of resonant absorption lineshape. It is analytically demonstrated that the phase shift of the time-dependent dipole moment that results in the lineshape changes consists of two components, the adiabatic laser-induced phase (LIP) due to the IR-induced Stark shifts of adiabatic Floquet states and the non-adiabatic phase correction due to the non-adiabatic IR-induced coupling between adiabatic Floquet states. Comparisons of the spectral lineshape calculated based on the TDGF approach with the results obtained with the LIP model [Phys. Rev. A 88 033409 (2013)] and the rotating-wave approximation (RWA) are presented for several typical cases, demonstrating that TDGF universally and accurately captures IR-induced lineshape changes. It is suggested that the LIP model works as long as the generalized adiabatic theorem [PRX Quantum 2 030302 (2021)] holds, and the RWA works when the higher-order IR-coupling effect in the formation of adiabatic Floquet states is neglectable.
Keywords:  attosecond transient absorption spectra      Floquet analysis      non-adiabatic phase correction  
Received:  22 July 2025      Revised:  02 September 2025      Accepted manuscript online:  17 September 2025
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. W2411002 and 12375018).
Corresponding Authors:  Di Zhao     E-mail:  d.zhao@mail.xjtu.edu.cn

Cite this article: 

Xu-Han Wang(王旭涵), Di Zhao(赵迪), and Peng-Bo Li(李蓬勃) A time-dependent generalized Floquet calculation of the laser-induced lineshape in attosecond transient absorption spectra 2025 Chin. Phys. B 34 113201

[1] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature 466 739
[2] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T and Chang Z 2018 Phys. Rev. A 97 031407
[3] Cao W, Warrick E R, Neumark D M and Leone S R 2016 New J. Phys. 18 013041
[4] Wang X, Chini M, Cheng Y,Wu Y, Tong X M and Chang Z 2013 Phys. Rev. A 87 063413
[5] Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C D, Burgdörfer J and Pfeifer T 2016 Science 354 738
[6] Chini M, Zhao B, Wang H, Cheng Y, Hu S X and Chang Z 2012 Phys. Rev. Lett. 109 073601
[7] Chen S, Schafer K J and Gaarde M B 2012 Opt. Lett. 37 2211
[8] Holler M, Schapper F, Gallmann L and Keller U 2011 Phys. Rev. Lett. 106 123601
[9] Sabbar M, Timmers H, Chen Y J, Pymer A K, Loh Z H, Sayres S G, Pabst S, Santra R and Leone S R 2017 Nat. Phys. 13 472
[10] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716
[11] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madronero J, Martín F, Pfeifer T 2014 Nature 516 374
[12] Bækhøj J E, Lévêque C and Madsen L B 2018 Phys. Rev. Lett. 121 023203
[13] Rørstad J J, Ravn N S W, Yue L and Madsen L B 2018 Phys. Rev. A 98 053401
[14] Warrick E R, Bækhøj J E, Cao W, Fidler A P, Jensen F, Madsen L B, Leone S R and Neumark D M 2017 Chem. Phys. Lett. 683 408
[15] Cheng Y, Chini M,Wang X, González-Castrillo A, Palacios A, Argenti L, Martín F and Chang Z 2016 Phys. Rev. A 94 023403
[16] Liao C T, Li X, Haxton D J, Rescigno T N, Lucchese R R, McCurdy C W and Sandhu A 2017 Phys. Rev. A 95 043427
[17] Bækhøj J E, Yue L, Madsen L B 2015 Phys. Rev. A 91 043408
[18] Garg M, Martin-Jimenez A, Pisarra M, Luo Y, Martín F and Kern K 2021 Nat. Photon. 16 196
[19] Golubev N V, Vaníček J and Kuleff A I 2021 Phys. Rev. Lett. 127 123001
[20] Shi X, Wu Y, Wang J, Kimberg V and Zhang S 2020 Phys. Rev. A 101 023401
[21] Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M and Leone S R 2014 Science 346 1348
[22] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L and Keller U 2016 Science 353 916
[23] Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N and Goulielmakis E 2017 Science 357 1134
[24] Seres E, Seres J, Serrat C and Namba S 2016 Phys. Rev. B 94 165125
[25] Hui D, Alqattan H, Yamada S, Pervak V, Yabana K and Hassan M Th 2021 Nat. Photon. 16 33
[26] Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H T, Guggenmos A, Huang M Y, Zürch M, Schafer K J, Neumark D M, Gaarde M B and Leone S R 2020 Phys. Rev. Lett. 124 207401
[27] Liu Z, Wang F, Sheng X, Wang J, Jiang L and Wei Z 2021 Phys. Rev. B 104 064103
[28] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[29] Calegari F, Sansone G, Stagira S, Vozzi C and NIsoli M 2016 J. Phys. B 49 062001
[30] Bengtsson S, Larsen E W, Kroon D, Camp S, Miranda M, Arnold C L, L’Huillier A, Schafer K J, Gaarde M B, Rippe L, et al. 2017 Nat. Photonics 11 252
[31] Corkum P B and Krausz F 2007 Nat. Phys. 3 381
[32] Gallmann L, Cirelli C and Keller U 2012 Annu. Rev. Phys. Chem. 63 447
[33] Yuan G, Jiang S, Wang Z, Hua W, Yu C, Jin C and Lu R 2019 Struct. Dyn. 6 054102
[34] Rørstad J J, Bækhøj J E and Madsen L B 2017 Phys. Rev. A 96 013430
[35] Wu M, Chen S, Camp S, Schafer K J and Gaarde M B 2016 J. Phys. B 49 062003
[36] Reduzzi M, Hummert J, Dubrouil A, Calegari F, Nisoli F, Frassetto F, Poletto L, Chen S,Wu M, Gaarde M B, Schafer K and Sansone G 2015 Phys. Rev. A 92 033408
[37] Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S I and Chang Z 2013 Sci. Rep. 3 1105
[38] Chen S, Wu M, Gaarde M B and Schafer K J 2013 Phys. Rev. A 88 033409
[39] Stooß V, Cavaletto S M, Donsa S, Blättermann A, Birk P, Keitel C H, B?rezinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett. 121 173005
[40] Liu Z, Ott C, Cavaletto S M, Harman Z, Keitel C H and Pfeifer T 2014 New J. Phys. 16 093005
[41] Dodin A and Brumer P 2021 PRX Quantum 2 030302
[42] Gaarde M B, Buth C, Tate J L and Schafer K J 2011 Phys. Rev. A 83 013419
[43] Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R and Schafer K J 2012 Phys. Rev. A 86 063408
[44] Chu S I and Telnov D A 2004 Phys. Rep. 390 1
[45] Li P C, Laughlin C and Chu S I 2014 Phys. Rev. A 89 023431
[46] Chu X, Chu S I and Laughlin C 2001 Phys. Rev. A 64 013406
[47] Tong X M and Chu S I 1997 Chem. Phys. 217 119
[1] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[4] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[5] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[6] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[7] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[8] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[9] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[10] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[11] A sensitive detection of high Rydberg atom with large dipole moment
Shan-Shan Zhang(张珊珊), Hong Cheng(成红), Pei-Pei Xin(辛培培), Han-Mu Wang(王汉睦), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(7): 074207.
[12] Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum
Hui Liu(刘慧), Kun-Liang Jiang(姜坤良), Jin-Qi Wang(王进起), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), Bao-Long Lü(吕宝龙). Chin. Phys. B, 2018, 27(5): 053201.
[13] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[14] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[15] Analytical solutions for a doubly driven two-level atom
Jin-Yun Liu(刘晋允), Feng-Dong Jia(贾凤东), Xiao-Kang Li(李晓康), Shuang-Fei Lv(吕双飞), Xiang-Yuan Xu(许祥源), Ping Xue(薛平), Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2017, 26(7): 074203.
No Suggested Reading articles found!