Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 053101    DOI: 10.1088/1674-1056/adbdbe
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations

Guo-Qing Peng(彭国庆)1, Kai Wang(王凯)2, Jun Yan(颜君)1,3,†, and Wei Kang(康炜)1
1 Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
2 Department of Physics and Anhui Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  For the observed line at 799.23 Å in tungsten EBIT experiment, which was assigned to be 3F4o3F3o ([Ar]4s24p54d) of W38+ ion, there were noticeable deviations for most calculated wavelengths from the measured value. To clarify this issue, we carry out an extensive calculation for energy levels and transition properties of W38+ ion using the multi-configuration Dirac-Hartree-Fock and relativistic configuration interaction method, in which more deeper inner core electron correlations are included, and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated. It is found that the inner core electron correlations can affect the total energy of levels, while only slightly modify the excited energy of levels in 4s24p54d complex. The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23 Å. Thus we are strongly suspicious this line should be misidentified, and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W38+ ion.
Keywords:  Kr-like W38+      the multi-configuration Dirac-Hartree-Fock (MCDHF) method      electron correlation imbalance      Breit interaction      quantum electrodynamic (QED)  
Received:  02 January 2025      Revised:  21 February 2025      Accepted manuscript online:  07 March 2025
PACS:  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.15.xp (Perturbation theory)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the Science Challenge Project of China Academy of Engineering Physics (CAEP) (Grant No. TZ2018005) and the National Natural Science Foundation of China (Grant Nos. 12474277, 12374259, 12104095, 12074081, and 12074082).
Corresponding Authors:  Jun Yan     E-mail:  yan_jun@iapcm.ac.cn

Cite this article: 

Guo-Qing Peng(彭国庆), Kai Wang(王凯), Jun Yan(颜君), and Wei Kang(康炜) Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations 2025 Chin. Phys. B 34 053101

[1] Neu R, Dux R, Kallenbach A, Pütterich T, Balden M, Fuchs J, Herrmann A, Maggi C, O’Mullane M, Pugno R, Radivojevic I, Rohde V, Sips A, Suttrop W, Whiteford A and the ASDEX Upgrade Team 2005 Nuclear Fusion 45 209
[2] Wurmshuber M, Doppermann S, Wurster S and Kiener D 2019 IOP Conference Series: Materials Science and Engineering 580 012051
[3] Sizyuk V and Hassanein A 2022 Sci. Rep. 12 4698
[4] Zhu X L, Ke Z H, Cheng L, Zhang P, Yuan Y, Cao X Z and Lu G H 2024 Nuclear Materials and Energy 38 101620
[5] Schmuck K, Burtscher M, Alfreider M and Kiener D 2024 Materials Design 247 113433
[6] Radtke R, Biedermann C, Schwob J L, Mandelbaum P and Doron R 2001 Phys. Rev. A 64 012720
[7] Utter S B, Beiersdorfer P and Trabert E 2002 Canadian Journal of Physics 80 1503
[8] Nakano T, Asakura N, Kubo H, Yanagibayashi J and Ueda Y 2009 Nuclear Fusion 49 115024
[9] Neu R L, Brezinsek S, Beurskens M, Bobkov V, Vries P, Giroud C, Joffrin E, Kallenbach A, Matthews G F, Mayoral M L, Pautasso G, Pütterich T, Ryter F, Schweinzer J, Team A U and Contributors J E 2014 IEEE Trans. Plasma Sci. 42 552
[10] Herrmann A, Zammuto I, Balden M, Greuner H, Jaksic N, Kallenbach A, Li M, Neu R and Rohde V 2017 Nuclear Materials and Energy 12 205
[11] Unterberg E A, Abrams T, Bykov I, Donovan D C, Duran J D, Elder J D, Guo H Y, Hollmann E M, Lasnier C J, Leonard A W, Moser A L, Nichols J H, Nygren R E, Rudakov D L, Stangeby P C, Thomas D M, Victor B S, Watkins J G, Wampler W R, Zach M P, Allen S L, Barton J L, Baylor L R, Boedo J A, Briesemeister A R, Buchenauer D A, Coburn J D, Chrobak C P, Ding R, Ennis D A, Grierson B A, Hinson E T, Johnson C A, McLean A G, Petrie TW, Schmitz O, Shiraki D,Wang H Q, Wilcox R S and Zamperini S 2019 Nuclear Fusion 60 016028
[12] Zito A,Wischmeier M, Kappatou A, Kallenbach A, Sciortino F, Rohde V, Schmid K, Hinson E T, Schmitz O, Cavedon M, McDermott R M, Dux R, Griener M and Stroth U 2023 Nuclear Fusion 63 096027
[13] Jin Y Z, Wang H, Liu X, Lian Y Y, Feng F, Wang J B, Chai Z J, Song J P and Duan X R 2023 Nuclear Materials and Energy 36 101502
[14] Neu R, Fournier K B, Schlogl D and Rice J 1997 J. Phys. B: At., Mol. Opt. Phys. 30 5057
[15] Pütterich T, Neu R, Biedermann C, Radtke R and Upgrade T A 2005 J. Phys. B: At., Mol. Opt. Phys. 38 3071
[16] Morita S, Dong C F, Kato D, Liu Y, Zhang L, Cui Z Y, Goto M, Kawamoto Y, Murakami I and Oishi T 2019 J. Phys.: Conf. Ser. 1289 012005
[17] Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F,Wu ZW, Lin X D, Gao X, Ding X B, Yang Y and Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 1010 165545
[18] Boumendjel M Y, Desgranges C, Guirlet R and Peyrusse O 2023 Phys. Plasmas 30 093302
[19] Lei L R, Ding X B, Wu C Q, Zhang D H, Zhang L, Zhang F L, Yao K, Yang Y, Fu Y Q and Dong C Z 2024 New J. Phys. 26 053001
[20] Kallenbach A, Neu R, Dux R, Fahrbach H U, Fuchs J C, Giannone L, Gruber O, Herrmann A, Lang P T, Lipschultz B, Maggi C F, Neuhauser J, Philipps V, Pütterich T, Rohde V, Roth J, Sergienko G, Sips A and Upgrade T A 2005 Plasma Physics and Controlled Fusion 47 B207
[21] Pütterich T, Neu R, Dux R, Whiteford A D, O’Mullane M G and the ASDEX Upgrade Team 2008 Plasma Physics and Controlled Fusion 50 085016
[22] Hollmann E M, Commaux N, Shiraki D, Alexander N, Bykov I, Moser A L, Thomas D and Victor B S 2017 Rev. Sci. Instrum. 88 103501
[23] Rzadkiewicz J, Yang Y, Koziol K, O’Mullane M G, Patel A, Xiao J, Yao K, Shen Y, Lu D, Hutton R, Zou Y and Contributors J 2018 Phys. Rev. A 97 052501
[24] Murakami I, Kato D, Oishi T, Goto M, Kawamoto Y, Suzuki C, Sakaue H A and Morita S 2021 Nuclear Materials and Energy 26 100923
[25] Zhang C Y, Wang K, Si R, Li J Q, Song C X, Wu S J, Yan B and Chen C 2023 Chin. Phys. B 32 113102
[26] Ralchenko Y, Draganić I N, Osin D, Gillaspy J D and Reader J 2011 Phys. Rev. A 83 032517
[27] Li J G, Jönsson P, Godefroid M, Dong C Z and Gaigalas G 2012 Phys. Rev. A 86 052523
[28] Tremblay P E, Fontaine G, Fusillo N P G, Dunlap B H, Gänicke B T, Hollands M A, Hermes J J, Marsh T R, Cukanovaite E and Cunningham T 2019 Nature 565 202
[29] Hu S X, Karasiev V V, Recoules V, Nilson P M, Brouwer N and Torrent M 2020 Nat. Commun. 11 1989
[30] Blundell S A, Johnson W R and Sapirstein J 1990 Phys. Rev. Lett. 65 1411
[31] Schiller S 2007 Phys. Rev. Lett. 98 180801
[32] Bieroń J, Gaigalas G, Gaidamauskas E, Fritzsche S, Indelicato P and Jönsson P 2009 Phys. Rev. A 80 012513
[33] Berengut J C, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801
[34] Tsai Y D, Eby J and Safronova M S 2022 Nature Astronomy 7 113
[35] Zhang X, Banerjee A, Leyser M, Perez G, Schiller S, Budker D and Antypas D 2023 Phys. Rev. Lett. 130 251002
[36] Göttel A S, Ejlli A, Karan K, Vermeulen S M, Aiello L, Raymond V and Grote H 2024 Phys. Rev. Lett. 133 101001
[37] Radtke R, Biedermann C, Fumann G, Schwob J L, Mandelbaum P and Doron R 2007 Atomic and Plasma-Material Interaction Data for Fusion 13 45
[38] Gaigalas G, Rynkun P and Froese Fischer C 2015 Phys. Rev. A 91 022509
[39] Guo X L, Grumer J, Brage T, Si R, Chen C Y, Jönsson P, Wang K, Yan J, Hutton R and Zou Y M 2016 J. Phys. B: Atom., Mol. Opt. Phys. 49 135003
[40] Lindgren I 1974 J. Phys. B: Atom. Mol. Phys. 7 2441
[41] Sharma R, Goyal A and Mohan M 2019 Journal of Electron Spectroscopy and Related Phenomena 234 47
[42] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
[43] Gu M F 2008 Canadian Journal of Physics 86 675
[44] Beier T, Mohr P J, Persson H and Soff G 1998 Phys. Rev. A 58 954
[45] Le Bigot E O, Indelicato P and Mohr P J 2001 Phys. Rev. A 64 052508
[46] Welton T A 1948 Phys. Rev. 74 1157
[47] Shabaev V M, Tupitsyn I I and Yerokhin V A 2013 Phys. Rev. A 88 012513
[48] Malyshev A V, Glazov D A, Shabaev V M, Tupitsyn I I, Yerokhin V A and Zaytsev V A 2022 Phys. Rev. A 106 012806
[49] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[50] Jönsson P, Gaigalas G, Froese Fischer C, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J G and Li W X 2023 Atoms 11 68
[51] Zhang C Y,Wang K, Godefroid M, Jönsson P, Si R and Chen C Y 2020 Phys. Rev. A 101 032509
[52] Zhang C Y, Wang K, Godefroid M, Jönsson P, Si R and Chen C Y 2021 Journal of Quantitative Spectroscopy and Radiative Transfer 269 107650
[53] Guo X L, Huang M, Yan J, Li S, Wang K, Si R and Chen C Y 2015 Chin. Phys. B 25 013101
[54] Froese Fischer C 2014 Atoms 2 1
[55] Froese Fischer C, Brage T and Jönsson P 2022 Computational Atomic Structure: An MCHF Approach (New York: Routledge) pp. 171-177
[56] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Froese Fischer C 2022 Atoms 11 7
[57] Mittleman Marvin H 1972 Phys. Rev. A 5 2395
[58] Indelicato P 2019 J. Phys. B: Atom., Mol. Opt. Phys. 52 232001
[59] Grant I P and Pyper N C 1976 J. Phys. B: Atom. Mol. Phys. 9 761
[60] Uehling E A 1935 Phys. Rev. 48 55
[61] Wichmann E H and Kroll N M 1956 Phys. Rev. 101 843
[62] Fullerton L W and Rinker G A 1976 Phys. Rev. A 13 1283
[63] Beier T, Plunien G, Greiner M and Soff G 1997 J. Phys. B: Atom., Mol. Opt. Phys. 30 2761
[64] Mohr P J 1983 Atomic Data and Nuclear Data Tables 29 453
[65] Klarsfeld S and Maquet A 1973 Phys. Lett. B 43 201
[66] Schiffmann S, Li J G, Ekman J, Gaigalas G, Godefroid M, Jönsson P and Bieroń J 2022 Comput. Phys. Commun. 278 108403
[67] Gaigalas G, Froese Fischer C, Rynkun P and Jönsson P 2017 Atoms 5 5
[68] Guo X L, Li M C, Si R, He X D, Wang K, Dai Z T, Liu Y M, Zhang H J and Chen C Y 2017 J. Phys. B: Atom., Mol. Opt. Phys. 51 015002
[69] Wang K, Zhang C Y, Si R, Li S, Chen Z B, Zhao X H, Chen C Y and Yan J 2018 Atomic Data and Nuclear Data Tables 123-124 114
[70] Kramida A, Yu Ralchenko, Reader J and and NIST ASD Team 2022 NIST Atomic Spectra Database (Ver. 5.10),
[Online]. Available: https://physics.nist.gov/asd
[2023, December 4]. National Institute of Standards and Technology, Gaithersburg, MD
[71] Fournier K B 1998 Atomic Data and Nuclear Data Tables 68 1
[72] Shi B L, Q Y, Li X F, Deng B L, Jiang G and Dou X L 2022 Chin. Phys. B 31 053102
[1] KLL dielectronic recombination process of He-like to O-like xenon ions
Zhang Deng-Hong(张登红), Shi Ying-Long(师应龙), Jiang Jun(蒋军), Dong Chen-Zhong(董晨钟), and Fumihiro Koike(小池文博) . Chin. Phys. B, 2012, 21(1): 013402.
[2] Relativistic calculations of 3s2 1S0–3s3p 1P1 and 3s2 1S0–3s3p 3P1,2 transition probabilities in the Mg isoelectronic sequence
Cheng Cheng(程诚), Gao Xiang(高翔), Qing Bo(青波), Zhang Xiao-Le(张小乐), and Li Jia-Ming(李家明). Chin. Phys. B, 2011, 20(3): 033103.
No Suggested Reading articles found!