Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097303    DOI: 10.1088/1674-1056/adcb9b
Special Issue: SPECIAL TOPIC — Moiré physics in two-dimensional materials
Prev   Next  

Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators

Zijian Ma(马子健)1 and Hongyi Yu(俞弘毅)1,2,†
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
Abstract  In moiré-patterned van der Waals structures of transition metal dichalcogenides, correlated insulators can form under integer and fractional fillings, whose transport properties are governed by various quasiparticle excitations including holons, doublons and interlayer exciton insulators. Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators. Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier. The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites. For the interlayer exciton insulator consisting of a holon and a carrier in different layers, we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states.
Keywords:  correlated insulator      holon      interlayer exciton insulator      moiré      pattern  
Received:  10 February 2025      Revised:  20 March 2025      Accepted manuscript online:  11 April 2025
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.20.Qt (Electron solids)  
  73.21.Ac (Multilayers)  
  73.21.Cd (Superlattices)  
Fund: H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061).
Corresponding Authors:  Hongyi Yu     E-mail:  yuhy33@mail.sysu.edu.cn

Cite this article: 

Zijian Ma(马子健) and Hongyi Yu(俞弘毅) Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators 2025 Chin. Phys. B 34 097303

[1] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[2] Wilson N P, Yao W, Shan J, et al. 2021 Nature 599 383
[3] Jin C, Regan E C, Yan A, et al. 2019 Nature 567 76
[4] Jin C, Regan E C, Wang D, et al. 2019 Nat. Phys. 15 1140
[5] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71
[6] Seyler K L, Rivera P, Yu H, et al. 2019 Nature 567 66
[7] Brotons-Gisbert M, Baek H, Molina-Sánchez A, et al. 2020 Nat. Mater. 19 630
[8] Baek H, Brotons-Gisbert M, Koong Z X, et al. 2020 Sci. Adv. 6 eaba8526
[9] Zhang Z, Wang Y, Watanabe K, et al. 2020 Nat. Phys. 16 1093
[10] Li H, Li S, Naik M H, et al. 2021 Nat. Mater. 20 945
[11] Gatti G, Issing J, Rademaker L, et al. 2023 Phys. Rev. Lett. 131 046401
[12] Li E, Hu J X, Feng X, et al. 2021 Nat. Commun. 12 5601
[13] Tang Y, Li L, Li T, et al. 2020 Nature 579 353
[14] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
[15] Shimazaki Y, Schwartz I, Watanabe K, et al. 2020 Nature 580 472
[16] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
[17] Chu Z, Regan E C, Ma X, et al. 2020 Phys. Rev. Lett. 125 186803
[18] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214
[19] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715
[20] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402
[21] Li H, Li S, Regan E C, et al. 2021 Nature 597 650
[22] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114
[23] Shimazaki Y, Kuhlenkamp C, Schwartz I, et al. 2021 Phys. Rev. X 11 021027
[24] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940
[25] Murakami Y, Takayoshi S, Koga A, et al. 2021 Phys. Rev. B 103 035110
[26] Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214
[27] Gu J, Ma L, Liu S, et al. 2022 Nat. Phys. 18 395
[28] Chen D, Lian Z, Huang X, et al. 2022 Nat. Phys. 18 1171
[29] Xu Y, Kang K, Watanabe K, et al. 2022 Nat. Nanotechnol. 17 934
[30] Zeng Y, Xia Z, Dery R, et al. 2023 Nat. Mater. 22 175
[31] Li H, Xiang Z, Regan E, et al. 2024 Nat. Nanotechnol. 19 618
[32] Wu F, Xu Q, Wang Q, et al. 2023 Phys. Rev. Lett. 131 256201
[33] Zhou J, Tang J and Yu H 2023 Chin. Phys. B 32 107308
[34] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452
[35] Kyläpää I and Komsa H P 2015 Phys. Rev. B 92 205418
[36] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[37] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[38] Chernikov A, Berkelbach T C, Hill H M, et al. 2014 Phys. Rev. Lett. 113 076802
[39] Yu H and Yao W 2021 Phys. Rev. X 11 021042
[40] Schmitt D, Bange J P, Bennecke W, et al. 2022 Nature 608 499
[41] Karni O, Barré E, Pareek V, et al. 2022 Nature 603 247
[1] Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction
Xiaoyu Sun(孙晓雨), Lei Qiao(乔雷), and Peizi Zhao(赵培茈). Chin. Phys. B, 2025, 34(9): 090308.
[2] Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients
Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 097309.
[3] Spiral trajectories of asymmetric molecules
Nan Sheng(盛楠), Shiqi Sheng(盛世奇), Yu-Song Tu(涂育松), Rong-Zheng Wan(万荣正), Zuo-Wei Wang(王作维), Zhanchun Tu(涂展春), and Hai-Ping Fang(方海平). Chin. Phys. B, 2025, 34(8): 080507.
[4] Development characteristics of dielectric barrier discharge channels with rotating high-voltage electrodes
Hui Jiang(姜慧), Jinyu Tang(唐金宇), and Yufei Han(韩雨菲). Chin. Phys. B, 2025, 34(6): 065101.
[5] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[6] Fabrication of two-dimensional van der Waals moiré superlattices
Zihao Wan(万子豪), Chao Wang(王超), Hang Zheng(郑航), Wenna Tang(唐文娜), Zihao Fu(付梓豪), Weilin Liu(刘伟林), Zhenjia Zhou(周振佳), Jun Li(李骏), Guowen Yuan(袁国文), and Libo Gao(高力波). Chin. Phys. B, 2025, 34(4): 047302.
[7] Influence of surface contamination on electric field distribution of insulators
Xingcai Li(李兴财), Yingge Liu(刘滢格), and Juan Wang(王娟). Chin. Phys. B, 2025, 34(3): 034101.
[8] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[9] Turing instability-induced oscillations in coupled reaction-diffusion systems
Nan Wang(王楠), Yuan Tong(仝源), Fucheng Liu(刘富成), Xiaoxuan Li(李晓璇), Yafeng He(贺亚峰), and Weili Fan(范伟丽). Chin. Phys. B, 2025, 34(3): 038201.
[10] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[11] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[12] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[13] Tuning the diffusion constant to optimize the readout of positional information of spatial concentration patterns
Ka Kit Kong(江嘉杰), Chunxiong Luo(罗春雄), and Feng Liu(刘峰). Chin. Phys. B, 2024, 33(8): 088703.
[14] Theory and verification of moiré fringes for x-ray three-phase grating interferometer
Yu-Zheng Shan(单雨征), Yong-Shuai Ge(葛永帅), Jun Yang(杨君), Da-Yu Guo(郭大育), Xue-Bao Cai(蔡学宝), Xiao-Ke Liu(刘晓珂), Xiao-Wen Hou(侯晓文), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2024, 33(5): 056101.
[15] Spatial patterns of the Brusselator model with asymmetric Lévy diffusion
Hongwei Yin(尹洪位), Shangtao Yang(杨尚涛), Xiaoqing Wen(文小庆), Haohua Wang(王浩华), and Shufen Yang(杨淑芬). Chin. Phys. B, 2024, 33(11): 110202.
No Suggested Reading articles found!