Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097305    DOI: 10.1088/1674-1056/ade24e
RAPID COMMUNICATION Prev   Next  

Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain

Yi Zhu(朱怡)2,3, Hao Liu(刘昊)2,3, Huilin Lai(赖辉琳)2,3, Zhenghua An(安正华)2,3, Yinyan Zhu(朱银燕)1,2,4,5,§, Lifeng Yin(殷立峰)1,2,3,4,‡, and Jian Shen(沈健)1,2,3,4,5,6,†
1 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
2 State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 Department of Physics, Fudan University, Shanghai 200433, China;
4 Zhangjiang Fudan International Innovation Center, Shanghai 201210, China;
5 Hefei National Laboratory, Hefei 230088, China;
6 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  Epitaxial strain is an effective way to control thermoelectricity of a thin film system. In this work, we investigate strain-dependent thermoelectricity of [(SrTiO$_{3}$)$_{3}$/(SrTi$_{0.8}$Nb$_{0.2}$O$_{3}$)$_{3}$]$_{10 }$ superlattices grown on different substrates, including $-0.96$% on (LaAlO$_{3}$)$_{0.3}$(SrAl$_{0.5}$Ta$_{0.5}$O$_{3}$)$_{0.7}$(001) (LSAT), 0% on SrTiO$_{3}$(001) (STO), $+0.99$% on DyScO$_{3}$(110) (DSO) and $+1.64$% on GdScO$_{3}$(110) (GSO), respectively. Our results show that the highest room-temperature thermoelectricity is achieved when the STO-based superlattice is grown on the DSO substrate with $+0.99$% tensile strain. This is attributed to the high permittivity and low dielectric loss arising from the ferroelectric domain and electron-phonon coupling, which boost the power factor (PF) to 10.5 mW$\cdot$m$^{-1}\cdot$K$^{-2}$ at 300 K.
Keywords:  strain engineering      thermoelectric superlattices      ferroelectricity  
Received:  04 May 2025      Revised:  06 June 2025      Accepted manuscript online:  09 June 2025
PACS:  73.50.Lw (Thermoelectric effects)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and help during experiments. This work is supported by the National Key Research & Development Program of China (Grant No. 2022YFA1403300), the Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300103), the National Natural Science Foundation of China (Grant Nos. 11991060, 11427902, 12074075, 62171136, and 12474165), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the Shanghai Municipal Natural Science Foundation (Grant Nos. 22ZR1407400, 22ZR1408100, and 23ZR1407200).
Corresponding Authors:  Jian Shen, Lifeng Yin, Yinyan Zhu     E-mail:  shenj5494@fudan.edu.cn;lifengyin@fudan.edu.cn;zhuyinyan@fudan.edu.cn

Cite this article: 

Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健) Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain 2025 Chin. Phys. B 34 097305

[1] DiSalvo F J 1999 Science 285 703
[2] Vining C B 2009 Nat. Mater. 8 83
[3] Zhang Q, Deng K, Wilkens L, Reith H and Nielsch K 2022 Nature Electronics 5 333
[4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[5] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[6] Yang L, Chen Z G, Dargusch M S and Zou J 2018 Advanced Energy Materials 8 1701797
[7] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[8] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H and Koumoto K 2007 Nat. Mater. 6 129
[9] Abutaha A I, Kumar S R S, Li K, Dehkordi A M, Tritt T M and Alshareef H N 2015 Chem. Mater. 27 2165
[10] Zhang Y Q, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y and Ohta H 2018 Nat. Commun. 9 2224
[11] Mune Y, Ohta H, Koumoto K, Mizoguchi T and Ikuhara Y 2007 Appl. Phys. Lett. 91 192105
[12] Zhu Y, Wang W, Liang B, Liu W, Zhou T, Meng B, Liu H, Gao W, Yang Y, Niu C, Zheng C, An Z, Wu S, Liu W, Zhang Y, Yuan C, Zhu Y, Yin L and Shen J 2025 J. Mat. Chem. C 13 2279
[13] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[14] Pei Y, Shi X, LaLonde A,Wang H, Chen L and Snyder G J 2011 Nature 473 66
[15] Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B and Pei Y 2019 Joule 3 1276
[16] Lou X, Li S, Chen X, Zhang Q, Deng H, Zhang J, Li D, Zhang X, Zhang Y, Zeng H and Tang G 2021 ACS Nano 15 8204
[17] Guo S D 2016 J. Mat. Chem. C 4 9366
[18] Fumega A O and Pardo V 2017 J. Phys.: Condens. Matter 29 065501
[19] Müller K A and Burkard H 1979 Phys. Rev. B 19 3593
[20] Neville R C, Hoeneisen B and Mead C A 1972 J. Appl. Phys. 43 2124
[21] Servoin J L, Luspin Y and Gervais F 1980 Phys. Rev. B 22 5501
[22] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J and Schlom D G 2004 Nature 430 758
[23] Pertsev N A, Tagantsev A K and Setter N 2000 Phys. Rev. B 61 R825
[24] Li Y L, Choudhury S, Haeni J H, Biegalski M D, Vasudevarao A, Sharan A, Ma H Z, Levy J, Gopalan V, Trolier-McKinstry S, Schlom D G, Jia Q X and Chen L Q 2006 Phys. Rev. B 73 184112
[25] Bauer G E W, Iguchi R and Uchida K I 2021 Phys. Rev. Lett. 126 187603
[26] Tang P, Iguchi R, Uchida K I and Bauer G E W 2022 Phys. Rev. Lett. 128 047601
[27] Ye B, Miao T, Zhu Y, Huang H, Yang Y, Shuai M, Zhu Z, Guo H,Wang W, Zhu Y, Yin L and Shen J 2021 Rev. Sci. Instrum. 92 113906
[28] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540
[29] Kleibeuker J, Kuiper B, Harkema S, Koster G, Rijnders G, Tinnemans P, Vlieg E, Rossen P, Portale G, Ravichandran J and Ramesh R 2012 Phys. Rev. B 85 165413
[30] Zhang S, Deliyore-Ramírez J, Deng S, Nair B, Pesquera D, Jing Q, Vickers M E, Crossley S, Ghidini M, Guzmán-Verri G G, Moya X and Mathur N D 2024 Nat. Mater. 23 639
[31] Vendik O G, Zubko S P and Nikol’ski M A 1999 Technical Physics 44 349
[32] Biegalski M D 2006 Epitaxialy Strained Strontium Titanate (PhD thesis) (The Pennsylvania State Univ.)
[33] Gevorgian S S, Martinsson T, Linner P L J and Kollberg E L 1996 IEEE Trans. Microwave Theory Tech. 44 896
[34] Zou D F, Liu Y Y, Xie S H, Lin J G and Li J Y 2013 Chem. Phys. Lett. 586 159
[35] Jalan B, Allen S J, Beltz G E, Moetakef P and Stemmer S 2011 Appl. Phys. Lett. 98 132102
[36] Verma A, Kajdos A P, Cain T A, Stemmer S and Jena D 2014 Phys. Rev. Lett. 112 216601
[37] Himmetoglu B, Janotti A, Peelaers H, Alkauskas A and Van de Walle C G 2014 Phys. Rev. B 90 241204
[38] Janotti A, Steiauf D and Van deWalle C G 2011 Phys. Rev. B 84 201304
[39] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
[40] Amin B, Singh N, Tritt T M, Alshareef H N and Schwingenschlögl U 2013 Appl. Phys. Lett. 103 031907
[41] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[42] Zhang Y, Feng B, Hayashi H, Tohei T, Tanaka I, Ikuhara Y and Ohta H 2017 J. Appl. Phys. 121 185102
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Lee J H, Fang L, Vlahos E, et al. 2010 Nature 466 954
[45] Nuzhnyy D, Petzelt J, Kamba S, Kužel P, Kadlec C, Bovtun V, Kempa M, Schubert J, Brooks C M and Schlom D 2009 Appl. Phys. Lett. 95 232902
[46] Biegalski M D, Vlahos E, Sheng G, Li Y L, Bernhagen M, Reiche P, Uecker R, Streiffer S K, Chen L Q, Gopalan V, Schlom D G and Trolier-McKinstry S 2009 Phys. Rev. B 79 224117
[47] Vasudevarao A, Denev S, Biegalski M D, Li Y, Chen L Q, Trolier- McKinstry S, Schlom D G and Gopalan V 2008 Appl. Phys. Lett. 92 192902
[48] Fumega A O and Pardo V 2017 J. Phys.: Condens. Matter 29 065501
[49] Huang Z, Liu Z Q, Yang M, Zeng S W, Annadi A, Lü W M, Tan X L, Chen P F, Sun L, Renshaw Wang X, Zhao Y L, Li C J, Zhou J, Han K, Wu W B, Feng Y P, Coey J M D, Venkatesan T and Ariando 2014 Phys. Rev. B 90 125156
[50] Xu R J, Huang JW, Barnard E S, Hong S S, Singh P,Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S and Hwang H Y 2020 Nat. Commun. 11 3141
[1] Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation
Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光). Chin. Phys. B, 2025, 34(8): 087701.
[2] Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE)
Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥). Chin. Phys. B, 2025, 34(6): 067701.
[3] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[4] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[5] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[10] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[11] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[12] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[13] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[14] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[15] Strain engineering of electronic and magnetic properties of Ga2S2 nanoribbons
Bao-Ji Wang(王宝基), Xiao-Hua Li(李晓华), Li-Wei Zhang(张利伟), Guo-Dong Wang(王国东), San-Huang Ke(柯三黄). Chin. Phys. B, 2017, 26(5): 057102.
No Suggested Reading articles found!