Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087701    DOI: 10.1088/1674-1056/add1bc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation

Jiayi Gu(顾嘉仪)1, Haiyi Zhang(张海义)1, Weijin Pan(潘炜进)1, Haifeng Bu(卜海峰)1, Zhijian Shen(沈志健)1, Shengchun Shen(沈胜春)1,†, Yuewei Yin(殷月伟)1,‡, and Xiaoguang Li(李晓光)1,2
1 Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Doped HfO$_2$ as an emerging ferroelectric material, holds considerable promise for non-volatile memory applications. Epitaxial growth of doped HfO$_2$ thin films is widely adopted as an effective technique for revealing the intrinsic ferroelectric properties. In this study, based on systematic structural, chemical and electrical investigations, the influences of Mn doping and substrate orientation on ferroelectric properties of Mn-doped HfO$_2$ epitaxial thin films are investigated. The results demonstrate that Mn-doped HfO$_2$ thin films with orthorhombic phase can be epitaxially grown along [111] out-of-plane direction on both SrTiO$_{3}$ (001) and (110) substrates, and 10% Mn-doping significantly stabilizes the orthorhombic polar phase and enhances the ferroelectric polarization. Interestingly, compared to the films on SrTiO$_{3}$ (001) substrate, the better crystallinity and reduction of oxygen vacancy amount in Mn-doped HfO$_2$ films grown on the SrTiO$_{3}$ (110) substrate are observed, which enhance the remanent polarization and reduce the coercive field. It provides an effective approach for the controllable regulation of defects and the enhancement of intrinsic ferroelectricity in HfO$_2$-based materials.
Keywords:  HfO$_{2}$-based ferroelectric      substrate orientation      ferroelectricity      defects  
Received:  03 March 2025      Revised:  17 April 2025      Accepted manuscript online:  29 April 2025
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.55.fp (Other ferroelectric films)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52125204, 52250281, 52422209, 92163210, and U21A2066) and the National Key Research and Development Program of China (Grant Nos. 2024YFA1208601, 2022YFB3807602, and 2022YFB3807604).
Corresponding Authors:  Shengchun Shen, Yuewei Yin     E-mail:  scshen@ustc.edu.cn;yyw@ustc.edu.cn

Cite this article: 

Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光) Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation 2025 Chin. Phys. B 34 087701

[1] LiWF, Liu TW, Yang Z M,Wang LWand Liu Y Y 2025 Chin. Phys. Lett. 42 017302
[2] Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S 2018 MRS Commun. 8 795
[3] Kim S J, Mohan J, Summerfelt S R and Kim J 2019 JOM 71 246
[4] Zhu H, Tang C, Fonseca L R C and Ramprasad R 2012 J. Mater. Sci. 47 7399
[5] Böscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[6] Ramaswamy N, Calderoni A, Zahurak J, Servalli G, Chavan A, Chhajed S, Balakrishnan M, Fischer M, Hollander M, Ettisserry D P, Liao A, Karda K, Jerry M, Mariani M, Visconti A, Cook B R, Cook B D, Mills D, Torsi A, Mouli C, Byers E, Helm M, Pawlowski S, Shiratake S and Chandrasekaran N 2023 IEDM p. 1
[7] Wang D, Zhang Y, Guo Y B, Shang Z Z, Fu F J and Lu X B 2023 Chin. Phys. B 32 097701
[8] Kisi E H, Howard C J and Hill R J 1989 J. Am. Ceram. 72 1757
[9] Jiao P, Cheng H, Li J, Chen H, Liu Z, Xi Z, Ding W, Ma X, Wang J, Zheng N, Nie Y, Deng Y, Bellaiche L, Yang Y and Wu D 2023 Appl. Phys. Rev. 10 031417
[10] Yun Y, Buragohain P, Li M, Ahmadi Z, Zhang Y Z, Li X, Wang H H, Li J, Lu P, Tao L L, Wang H Y, Shield J E, Tsymbal E Y, Gruverman A and Xu X S 2022 Nat. Mater. 21 903
[11] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653
[12] Wei Y F, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Iñiguez J, Dkhil B and Noheda B 2018 Nat. Mater. 17 1095
[13] Gao R L, Liu C, Shi BW, Li Y C, Luo B, Chen R, OuyangWB, Gao H, Hu S B, Wang Y, Li D D and Ren W 2024 Chin. Phys. Lett. 41 087701
[14] Song T, Tan H, Dix N, Moalla R, Lyu J, Saint-Girons G, Bachelet R, Sánchez F and Fina I 2021 ACS Appl. Electron. Mater. 3 2106
[15] Song T, Tan H, Bachelet R, Saint-Girons G, Fina I and Sánchez F 2021 ACS Appl. Electron. Mater. 3 4809
[16] Liu K, Liu K, Zhang X C, Fang J, Jin F, Wu W B, Ma C and Wang L F 2024 Chin. Phys. Lett. 41 117701
[17] Song T F, Lenzi V, Silva J P B, Marques L, Fina I and Sánchez F 2023 Appl. Phys. Rev. 10 041415
[18] Estandía S, Gàzquez J, Varela M, Dix N, Qian M D, Solanas R, Fina I and Sánchez F 2021 J. Mater. Chem. C 9 3486
[19] Zhou X, Sun H Y, Li J C, Du X Z, Wang H, Luo Z, Wang Z J, Lin Y, Shen S C, Yin Y W and Li X G 2024 J. Materiomics 10 210
[20] Xu Z, Lu L, Xu J, Zheng W, Yu Y, Ding C, Wang S, Chen F, Tang M, Lu C and Wen Z 2022 Appl. Phys. Lett. 120 133504
[21] Cavalieri M, O’Connor E, Gastaldi C, Stolichnov I and Ionescu A M 2020 ACS Appl. Electron. Mater. 2 1752
[22] Yao L, Liu X, Cheng Y and Xiao B 2021 Nanotechnology 32 215708
[23] Park M H, Chung C C, Schenk T, Richter C, Hoffmann M, Wirth S, Jones J L, Mikolajick T and Schroeder U 2018 Adv. Electron. Mater. 4 1700489
[24] Zhou C, Ma L Y, Feng Y P, Kuo C Y, Ku Y C, Liu C E, Cheng X L, Li J X, Si Y Y, Huang H L, Huang Y, Zhao H J, Chang C F, Das S, Liu S and Chen Z H 2024 Nat. Commun. 15 2893
[25] Chouprik A, Negrov D, Tsymbal E Y and Zenkevich A 2021 Nanoscale 13 11635
[26] Shen Z, Liao L, Zhou Y, Xiong K, Zeng J,Wang X, Chen Y, Liu J, Guo T, Zhang S, Lin T, Shen H, Meng X,Wang Y, Cheng Y, Yang J, Chen P, Wang L, Bai X, Chu J and Wang J 2022 Appl. Phys. Lett. 120 162904
[27] Kaiser N, Song Y J, Vogel T, Piros E, Kim T, Schreyer P, Petzold S, Valenti R and Alff L 2023 ACS Appl. Electron. Mater. 5 754
[28] Lee J, Yang K, Kwon J Y, Kim J E, Han D I, Lee D H, Yoon J H and Park M H 2023 Nano Convergence 10 55
[29] Shi S, Xi H, Cao T, Lin W, Liu Z, Niu J, Lan D, Zhou C, Cao J, Su H, Zhao T, Yang P, Zhu Y, Yan X, Tsymbal E Y, Tian H and Chen J 2023 Nat. Commun. 14 1780
[30] Guo J, Tao L, Xu X, Hou L, Nan C W, Du S, Chen C and Ma J 2024 Adv. Mater. 36 2406038
[31] De A, Jung M H, Kim Y H, Bae S B, Jeong S G, Oh J Y, Choi Y, Lee H, Kim Y, Choi T, Kim Y M, Yang S M, Jeong H Y and ChoiWS 2024 ACS Appl. Mater. Interfaces 16 27532
[32] Song T F, Estandía S, Tan H, Dix N, Gàzquez J, Fina I and Sánchez F 2022 Adv. Electron. Mater. 8 2100420
[33] Liu K, Jin F, Zhou L, Liu K, Fang J, Lu J, Ma C, Wang L and Wu W 2024 ACS Appl. Mater. Interfaces 16 61239
[34] Song T, Tan H, Estandia S, Gazquez J, Gich M, Dix N, Fina I and Sanchez F 2022 Nanoscale 14 2337
[35] Jiao P J, Li J Y, Xi Z N, Zhang X Y, Wang J, Yang Y R, Deng Y and Wu D 2021 Appl. Phys. Lett. 119 252901
[36] Zhang H Y, Tu Y C, Wang Z J, Zhou X, Wang Y C, Du X Z, Shen S C, Yin Y W and Li X G 2024 J. Phys. D: Appl. Phys. 57 365305
[37] Jiang P F, Luo Q, Xu X X, Gong T C, Yuan P, Wang Y, Gao Z M, Wei W, Tai L and Lv H B 2021 Adv. Electron. Mater. 7 2000728
[38] Choi Y, Shin J, Moon S, Min J, Han C and Shin C 2023 Nanotechnology 34 185203
[39] Zhang X Y, Han J, Peng D C, Ruan Y J, Wu W Y, Wuu D S, Huang C J, Lien S Y and Zhu W Z 2022 Nanomaterials 12 3890
[40] Zhang Y, Xu J, Zhou D Y, Wang H H, Lu W Q and Choi C K 2018 Chin. Phys. B 27 048103
[41] Luo X G, Li Y, Yang H, Liang Y L, He K Y, Sun W H, Lin H H, Yao S D, Lu X, Wan L Y and Feng Z C 2018 Crystals 8 248
[42] Nand M, Tripathi S, Rajput P, Kumar M, Kumar Y, Mandal S K, Urkude R, Gupta M, Dawar A, Ojha S, Rai S K and Jha S N 2022 J. Alloys Compd. 928 167099
[43] Wang H, Guan Z Y, Li J C, Luo Z, Du X Z, Wang Z J, Zhao H Y, Shen S C, Yin Y W and Li X G 2024 Adv. Mater. 36 2211305
[44] Yang J, Meng X J, Shen M R, Gao C, Sun J L and Chu J H 2008 Appl. Phys. Lett. 93 092908
[1] Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天). Chin. Phys. B, 2025, 34(7): 076801.
[2] Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE)
Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥). Chin. Phys. B, 2025, 34(6): 067701.
[3] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[4] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[5] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[6] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[7] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[8] Observing ferroelastic switching in Hf0.5Zr0.5O2 thin film
Zhao Guan(关赵), Tao Wang(王陶), Yunzhe Zheng(郑赟喆), Yue Peng(彭悦), Luqi Wei(魏鹿奇), Yuke Zhang(张宇科), Abliz Mattursun(阿卜力孜cdot麦提图尔荪), Jiahao Huang(黄家豪), Wen-Yi Tong(童文旖), Genquan Han(韩根全), Binbin Chen(陈斌斌), Ping-Hua Xiang(向平华), Chun-Gang Duan(段纯刚), and Ni Zhong(钟妮). Chin. Phys. B, 2024, 33(6): 067701.
[9] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[10] Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火). Chin. Phys. B, 2024, 33(12): 126101.
[11] Physics through the microscope
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武). Chin. Phys. B, 2024, 33(11): 116801.
[12] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[13] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[14] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[15] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
No Suggested Reading articles found!