| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation |
| Jiayi Gu(顾嘉仪)1, Haiyi Zhang(张海义)1, Weijin Pan(潘炜进)1, Haifeng Bu(卜海峰)1, Zhijian Shen(沈志健)1, Shengchun Shen(沈胜春)1,†, Yuewei Yin(殷月伟)1,‡, and Xiaoguang Li(李晓光)1,2 |
1 Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract Doped HfO$_2$ as an emerging ferroelectric material, holds considerable promise for non-volatile memory applications. Epitaxial growth of doped HfO$_2$ thin films is widely adopted as an effective technique for revealing the intrinsic ferroelectric properties. In this study, based on systematic structural, chemical and electrical investigations, the influences of Mn doping and substrate orientation on ferroelectric properties of Mn-doped HfO$_2$ epitaxial thin films are investigated. The results demonstrate that Mn-doped HfO$_2$ thin films with orthorhombic phase can be epitaxially grown along [111] out-of-plane direction on both SrTiO$_{3}$ (001) and (110) substrates, and 10% Mn-doping significantly stabilizes the orthorhombic polar phase and enhances the ferroelectric polarization. Interestingly, compared to the films on SrTiO$_{3}$ (001) substrate, the better crystallinity and reduction of oxygen vacancy amount in Mn-doped HfO$_2$ films grown on the SrTiO$_{3}$ (110) substrate are observed, which enhance the remanent polarization and reduce the coercive field. It provides an effective approach for the controllable regulation of defects and the enhancement of intrinsic ferroelectricity in HfO$_2$-based materials.
|
Received: 03 March 2025
Revised: 17 April 2025
Accepted manuscript online: 29 April 2025
|
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
| |
77.55.fp
|
(Other ferroelectric films)
|
| |
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52125204, 52250281, 52422209, 92163210, and U21A2066) and the National Key Research and Development Program of China (Grant Nos. 2024YFA1208601, 2022YFB3807602, and 2022YFB3807604). |
Corresponding Authors:
Shengchun Shen, Yuewei Yin
E-mail: scshen@ustc.edu.cn;yyw@ustc.edu.cn
|
Cite this article:
Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光) Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation 2025 Chin. Phys. B 34 087701
|
[1] LiWF, Liu TW, Yang Z M,Wang LWand Liu Y Y 2025 Chin. Phys. Lett. 42 017302 [2] Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S 2018 MRS Commun. 8 795 [3] Kim S J, Mohan J, Summerfelt S R and Kim J 2019 JOM 71 246 [4] Zhu H, Tang C, Fonseca L R C and Ramprasad R 2012 J. Mater. Sci. 47 7399 [5] Böscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903 [6] Ramaswamy N, Calderoni A, Zahurak J, Servalli G, Chavan A, Chhajed S, Balakrishnan M, Fischer M, Hollander M, Ettisserry D P, Liao A, Karda K, Jerry M, Mariani M, Visconti A, Cook B R, Cook B D, Mills D, Torsi A, Mouli C, Byers E, Helm M, Pawlowski S, Shiratake S and Chandrasekaran N 2023 IEDM p. 1 [7] Wang D, Zhang Y, Guo Y B, Shang Z Z, Fu F J and Lu X B 2023 Chin. Phys. B 32 097701 [8] Kisi E H, Howard C J and Hill R J 1989 J. Am. Ceram. 72 1757 [9] Jiao P, Cheng H, Li J, Chen H, Liu Z, Xi Z, Ding W, Ma X, Wang J, Zheng N, Nie Y, Deng Y, Bellaiche L, Yang Y and Wu D 2023 Appl. Phys. Rev. 10 031417 [10] Yun Y, Buragohain P, Li M, Ahmadi Z, Zhang Y Z, Li X, Wang H H, Li J, Lu P, Tao L L, Wang H Y, Shield J E, Tsymbal E Y, Gruverman A and Xu X S 2022 Nat. Mater. 21 903 [11] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653 [12] Wei Y F, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Iñiguez J, Dkhil B and Noheda B 2018 Nat. Mater. 17 1095 [13] Gao R L, Liu C, Shi BW, Li Y C, Luo B, Chen R, OuyangWB, Gao H, Hu S B, Wang Y, Li D D and Ren W 2024 Chin. Phys. Lett. 41 087701 [14] Song T, Tan H, Dix N, Moalla R, Lyu J, Saint-Girons G, Bachelet R, Sánchez F and Fina I 2021 ACS Appl. Electron. Mater. 3 2106 [15] Song T, Tan H, Bachelet R, Saint-Girons G, Fina I and Sánchez F 2021 ACS Appl. Electron. Mater. 3 4809 [16] Liu K, Liu K, Zhang X C, Fang J, Jin F, Wu W B, Ma C and Wang L F 2024 Chin. Phys. Lett. 41 117701 [17] Song T F, Lenzi V, Silva J P B, Marques L, Fina I and Sánchez F 2023 Appl. Phys. Rev. 10 041415 [18] Estandía S, Gàzquez J, Varela M, Dix N, Qian M D, Solanas R, Fina I and Sánchez F 2021 J. Mater. Chem. C 9 3486 [19] Zhou X, Sun H Y, Li J C, Du X Z, Wang H, Luo Z, Wang Z J, Lin Y, Shen S C, Yin Y W and Li X G 2024 J. Materiomics 10 210 [20] Xu Z, Lu L, Xu J, Zheng W, Yu Y, Ding C, Wang S, Chen F, Tang M, Lu C and Wen Z 2022 Appl. Phys. Lett. 120 133504 [21] Cavalieri M, O’Connor E, Gastaldi C, Stolichnov I and Ionescu A M 2020 ACS Appl. Electron. Mater. 2 1752 [22] Yao L, Liu X, Cheng Y and Xiao B 2021 Nanotechnology 32 215708 [23] Park M H, Chung C C, Schenk T, Richter C, Hoffmann M, Wirth S, Jones J L, Mikolajick T and Schroeder U 2018 Adv. Electron. Mater. 4 1700489 [24] Zhou C, Ma L Y, Feng Y P, Kuo C Y, Ku Y C, Liu C E, Cheng X L, Li J X, Si Y Y, Huang H L, Huang Y, Zhao H J, Chang C F, Das S, Liu S and Chen Z H 2024 Nat. Commun. 15 2893 [25] Chouprik A, Negrov D, Tsymbal E Y and Zenkevich A 2021 Nanoscale 13 11635 [26] Shen Z, Liao L, Zhou Y, Xiong K, Zeng J,Wang X, Chen Y, Liu J, Guo T, Zhang S, Lin T, Shen H, Meng X,Wang Y, Cheng Y, Yang J, Chen P, Wang L, Bai X, Chu J and Wang J 2022 Appl. Phys. Lett. 120 162904 [27] Kaiser N, Song Y J, Vogel T, Piros E, Kim T, Schreyer P, Petzold S, Valenti R and Alff L 2023 ACS Appl. Electron. Mater. 5 754 [28] Lee J, Yang K, Kwon J Y, Kim J E, Han D I, Lee D H, Yoon J H and Park M H 2023 Nano Convergence 10 55 [29] Shi S, Xi H, Cao T, Lin W, Liu Z, Niu J, Lan D, Zhou C, Cao J, Su H, Zhao T, Yang P, Zhu Y, Yan X, Tsymbal E Y, Tian H and Chen J 2023 Nat. Commun. 14 1780 [30] Guo J, Tao L, Xu X, Hou L, Nan C W, Du S, Chen C and Ma J 2024 Adv. Mater. 36 2406038 [31] De A, Jung M H, Kim Y H, Bae S B, Jeong S G, Oh J Y, Choi Y, Lee H, Kim Y, Choi T, Kim Y M, Yang S M, Jeong H Y and ChoiWS 2024 ACS Appl. Mater. Interfaces 16 27532 [32] Song T F, Estandía S, Tan H, Dix N, Gàzquez J, Fina I and Sánchez F 2022 Adv. Electron. Mater. 8 2100420 [33] Liu K, Jin F, Zhou L, Liu K, Fang J, Lu J, Ma C, Wang L and Wu W 2024 ACS Appl. Mater. Interfaces 16 61239 [34] Song T, Tan H, Estandia S, Gazquez J, Gich M, Dix N, Fina I and Sanchez F 2022 Nanoscale 14 2337 [35] Jiao P J, Li J Y, Xi Z N, Zhang X Y, Wang J, Yang Y R, Deng Y and Wu D 2021 Appl. Phys. Lett. 119 252901 [36] Zhang H Y, Tu Y C, Wang Z J, Zhou X, Wang Y C, Du X Z, Shen S C, Yin Y W and Li X G 2024 J. Phys. D: Appl. Phys. 57 365305 [37] Jiang P F, Luo Q, Xu X X, Gong T C, Yuan P, Wang Y, Gao Z M, Wei W, Tai L and Lv H B 2021 Adv. Electron. Mater. 7 2000728 [38] Choi Y, Shin J, Moon S, Min J, Han C and Shin C 2023 Nanotechnology 34 185203 [39] Zhang X Y, Han J, Peng D C, Ruan Y J, Wu W Y, Wuu D S, Huang C J, Lien S Y and Zhu W Z 2022 Nanomaterials 12 3890 [40] Zhang Y, Xu J, Zhou D Y, Wang H H, Lu W Q and Choi C K 2018 Chin. Phys. B 27 048103 [41] Luo X G, Li Y, Yang H, Liang Y L, He K Y, Sun W H, Lin H H, Yao S D, Lu X, Wan L Y and Feng Z C 2018 Crystals 8 248 [42] Nand M, Tripathi S, Rajput P, Kumar M, Kumar Y, Mandal S K, Urkude R, Gupta M, Dawar A, Ojha S, Rai S K and Jha S N 2022 J. Alloys Compd. 928 167099 [43] Wang H, Guan Z Y, Li J C, Luo Z, Du X Z, Wang Z J, Zhao H Y, Shen S C, Yin Y W and Li X G 2024 Adv. Mater. 36 2211305 [44] Yang J, Meng X J, Shen M R, Gao C, Sun J L and Chu J H 2008 Appl. Phys. Lett. 93 092908 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|